985 resultados para Theoretical justification
Resumo:
Electrostatic discharges have been identified as the most likely cause in a number of incidents of fire and explosion with unexplained ignitions. The lack of data and suitable models for this ignition mechanism creates a void in the analysis to quantify the importance of static electricity as a credible ignition mechanism. Quantifiable hazard analysis of the risk of ignition by static discharge cannot, therefore, be entirely carried out with our current understanding of this phenomenon. The study of electrostatics has been ongoing for a long time. However, it was not until the wide spread use of electronics that research was developed for the protection of electronics from electrostatic discharges. Current experimental models for electrostatic discharge developed for intrinsic safety with electronics are inadequate for ignition analysis and typically are not supported by theoretical analysis. A preliminary simulation and experiment with low voltage was designed to investigate the characteristics of energy dissipation and provided a basis for a high voltage investigation. It was seen that for a low voltage the discharge energy represents about 10% of the initial capacitive energy available and that the energy dissipation was within 10 ns of the initial discharge. The potential difference is greatest at the initial break down when the largest amount of the energy is dissipated. The discharge pathway is then established and minimal energy is dissipated as energy dissipation becomes greatly influenced by other components and stray resistance in the discharge circuit. From the initial low voltage simulation work, the importance of the energy dissipation and the characteristic of the discharge were determined. After the preliminary low voltage work was completed, a high voltage discharge experiment was designed and fabricated. Voltage and current measurement were recorded on the discharge circuit allowing the discharge characteristic to be recorded and energy dissipation in the discharge circuit calculated. Discharge energy calculations show consistency with the low voltage work relating to discharge energy with about 30-40% of the total initial capacitive energy being discharged in the resulting high voltage arc. After the system was characterised and operation validated, high voltage ignition energy measurements were conducted on a solution of n-Pentane evaporating in a 250 cm3 chamber. A series of ignition experiments were conducted to determine the minimum ignition energy of n-Pentane. The data from the ignition work was analysed with standard statistical regression methods for tests that return binary (yes/no) data and found to be in agreement with recent publications. The research demonstrates that energy dissipation is heavily dependent on the circuit configuration and most especially by the discharge circuit's capacitance and resistance. The analysis established a discharge profile for the discharges studied and validates the application of this methodology for further research into different materials and atmospheres; by systematically looking at discharge profiles of test materials with various parameters (e.g., capacitance, inductance, and resistance). Systematic experiments looking at the discharge characteristics of the spark will also help understand the way energy is dissipated in an electrostatic discharge enabling a better understanding of the ignition characteristics of materials in terms of energy and the dissipation of that energy in an electrostatic discharge.
Resumo:
This paper conceptualizes knowledge governance (KG) in project-based organizations (PBOs) and its methodological approaches for empirical investigation. Three key contributions towards a multi-faceted view of KG and an understanding of KG in PBOs are advanced. These contributions include a definition of KG in PBOs, a conceptual framework to investigate KG and a methodological framework for empirical inquiry into KG in PBO settings. Our definition highlights the contingent nature of KG processes in relation to their organizational context. The conceptual framework addresses macro- and micro-level elements of KG and their interaction. The methodological framework proposes five different research approaches, structured by differentiation and integration of various ontological and epistemological stances. Together these contributions provide a novel platform for understanding KG in PBOs and developing new insights into the design and execution of research on KG within PBOs.
Resumo:
The purpose of this paper is to present a theoretical framework to investigate the relationship between work motivation, organisational commitment and professional commitment in temporary organisations. Through a review of theory, we contend that work motivation has two major patterns — internal motivation (which includes intrinsic, need-based and self-deterministic theories), and external motivation (which includes cognitive or process-based theories of motivation) through which it has been investigated. We also hold the nature of employee commitment to be of three types — affective, continuance and normative. This commitment may be towards either the organisation or the profession. A literature review revealed that the characteristics of the temporary organisation — specifically tenure and task — regulate the relationship between work motivation, organisational commitment and professional commitment. Testable propositions are presented.
Resumo:
The complex [1,2-bis(di-tert-butylphosphanyl)ethane-[kappa]2P,P']diiodidonickel(II), [NiI2(C18H40P2] or (dtbpe-[kappa]2P)NiI2, [dtbpe is 1,2-bis(di-tert-butylphosphanyl)ethane], is bright blue-green in the solid state and in solution, but, contrary to the structure predicted for a blue or green nickel(II) bis(phosphine) complex, it is found to be close to square planar in the solid state. The solution structure is deduced to be similar, because the optical spectra measured in solution and in the solid state contain similar absorptions. In solution at room temperature, no 31P{1H} NMR resonance is observed, but the very small solid-state magnetic moment at temperatures down to 4 K indicates that the weak paramagnetism of this nickel(II) complex can be ascribed to temperature independent paramagnetism, and that the complex has no unpaired electrons. The red [1,2-bis(di-tert-butylphosphanyl)ethane-[kappa]2P,P']dichloridonickel(II), [NiCl2(C18H40P2] or (dtbpe-[kappa]2P)NiCl2, is very close to square planar and very weakly paramagnetic in the solid state and in solution, while the maroon [1,2-bis(di-tert-butylphosphanyl)ethane-[kappa]2P,P']dibromidonickel(II), [NiBr2(C18H40P2] or (dtbpe-[kappa]2P)NiBr2, is isostructural with the diiodide in the solid state, and displays paramagnetism intermediate between that of the dichloride and the diiodide in the solid state and in solution. Density functional calculations demonstrate that distortion from an ideal square plane for these complexes occurs on a flat potential energy surface. The calculations reproduce the observed structures and colours, and explain the trends observed for these and similar complexes. Although theoretical investigation identified magnetic-dipole-allowed excitations that are characteristic for temperature-independent paramagnetism (TIP), theory predicts the molecules to be diamagnetic.
Resumo:
The purpose of this paper is to present theoretical lenses that explain the relation between work motivation and project management success in case of temporary organizations such as projects. This paper is a part of the larger research study that first empirically identifies the constructs of work motivation in case of temporary organizations, and then empirically determines the relation between work motivation, and project management success. In the current paper, we have briefly reviewed the theories of work motivation from the work design school. These theories are predominantly drawn from the industrial/ organizational psychology literature. Then, we have considered the recent research on Nine Schools of Project Management as a point of departure to review theory on project management success. These theoretical perspectives are drawn from project management literature. We then illustrate the points of overlap for the theories drawn from these two disciplines. This review helps us to position our research study within the industrial/ organizational psychology, and project management literature as a cross-discipline study.
Resumo:
Whole-body cryotherapy (WBC) involves short exposures to air temperatures below –100°C. WBC is increasingly accessible to athletes, and is purported to enhance recovery after exercise and facilitate rehabilitation postinjury. Our objective was to review the efficacy and effectiveness of WBC using empirical evidence from controlled trials. We found ten relevant reports; the majority were based on small numbers of active athletes aged less than 35 years. Although WBC produces a large temperature gradient for tissue cooling, the relatively poor thermal conductivity of air prevents significant subcutaneous and core body cooling. There is weak evidence from controlled studies that WBC enhances antioxidant capacity and parasympathetic reactivation, and alters inflammatory pathways relevant to sports recovery. A series of small randomized studies found WBC offers improvements in subjective recovery and muscle soreness following metabolic or mechanical overload, but little benefit towards functional recovery. There is evidence from one study only that WBC may assist rehabilitation for adhesive capsulitis of the shoulder. There were no adverse events associated with WBC; however, studies did not seem to undertake active surveillance of predefined adverse events. Until further research is available, athletes should remain cognizant that less expensive modes of cryotherapy, such as local ice-pack application or cold-water immersion, offer comparable physiological and clinical effects to WBC.
Resumo:
Indigenous media around the globe have expanded considerably in recent years, a process that has also led to an increase in the number of Indigenous news organisations. Yet, research into Indigenous news and journalism is still rare, with mostly individual case studies having been undertaken in different parts of the globe. Drawing on existing research gathered from a variety of global contexts, this paper theorises five main dimensions which can help us think about and empirically examine Indigenous journalism culture. They include: the empowerment role of Indigenous journalism; the ability to offer a counter-narrative to mainstream media reporting; journalism’s role in language revitalisation; reporting through a culturally appropriate framework; and the watchdog function of Indigenous journalism. These dimensions are discussed in some detail, in an attempt to guide future studies into the structures, roles, practices and products of Indigenous journalism across the globe.
Resumo:
Purpose This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs, and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 mm to 100 mm, using a nominal photon energy of 6 MV. Results According to the practical definition established in this project, field sizes < 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0 % to 2.0 %, or field size uncertainties are 0.5 mm, field sizes < 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes < 12 mm. Source occlusion also caused a large change in OPF for field sizes < 8 mm. Based on the results of this study, field sizes < 12 mm were considered to be theoretically very small for 6 MV beams. Conclusions Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least < 12 mm and more conservatively < 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.
Resumo:
The syntheses, properties and electronic structures of a series of porphyrin dimers connected by two-atom bridges were compared. The study found that an azo linker results in the most efficient electronic communication between the two porphyrin rings, and is the superior connector for dimers, trimers and oligomers in the design of nonlinear optical materials. This has implications for the design of molecular probes and sensors, photodynamic therapy, microfabrication, and three-dimensional optical data storage. The research led to the synthesis of a number of new porphyrin monomers and dimers, which were characterised using structural, spectroscopic and spectrometric techniques.
Resumo:
Attempts by universities to provide an improved learning environment to students have led to an increase in team-teaching approaches in higher education. While the definitions of team-teaching differ slightly, the benefits of team-teaching have been cited widely in the higher education literature. By tapping the specialist knowledge of a variety of staff members, students are exposed to current and emerging knowledge in different fields and topic areas; students are also able to understand concepts from a variety of viewpoints. However, while there is some evidence of the usefulness of team-teaching, there is patchy empirical support to underpin how well students appreciate and adapt to team-teaching approaches. This paper reports on the team-teaching approaches adopted in the delivery of an introductory journalism and communication course at the University of Queensland. The success of the approaches is examined against the background of quantitative and qualitative data. The study found that team-teaching is generally very well received by undergraduate students because they value the diverse expertise and teaching styles they are exposed to. Despite the positive feedback, students also complained about problems of continuity and cohesiveness.
Resumo:
Aim The aim of this paper is to offer an alternative knowing-how knowing-that framework of nursing knowledge, which in the past has been accepted as the provenance of advanced practice. Background The concept of advancing practice is central to the development of nursing practice and has been seen to take on many different forms depending on its use in context. To many it has become synonymous with the work of the advanced or expert practitioner; others have viewed it as a process of continuing professional development and skills acquisition. Moreover, it is becoming closely linked with practice development. However, there is much discussion as to what constitutes the knowledge necessary for advancing and advanced practice, and it has been suggested that theoretical and practical knowledge form the cornerstone of advanced knowledge. Design The design of this article takes a discursive approach as to the meaning and integration of knowledge within the context of advancing nursing practice. Method A thematic analysis of the current discourse relating to knowledge integration models in an advancing and advanced practice arena was used to identify concurrent themes relating to the knowing-how knowing-that framework which commonly used to classify the knowledge necessary for advanced nursing practice. Conclusion There is a dichotomy as to what constitutes knowledge for advanced and advancing practice. Several authors have offered a variety of differing models, yet it is the application and integration of theoretical and practical knowledge that defines and develops the advancement of nursing practice. An alternative framework offered here may allow differences in the way that nursing knowledge important for advancing practice is perceived, developed and coordinated. Relevance to clinical practice What has inevitably been neglected is that there are various other variables which when transposed into the existing knowing-how knowing-that framework allows for advanced knowledge to be better defined. One of the more notable variables is pattern recognition, which became the focus of Benner’s work on expert practice. Therefore, if this is included into the knowing-how knowing-that framework, the knowing-how becomes the knowledge that contributes to advancing and advanced practice and the knowing-that becomes the governing action based on a deeper understanding of the problem or issue.
Resumo:
This research contributes new understandings about the development of the professional identity of child care practitioners and how professional identity changes during the transition from student to practitioner. Self-authorship theory was used as the framework to investigate the development of professional identity through exploration of beliefs about practice, sense of self, and capabilities for collaborative engagement. Students recruited for this research were completing their qualifications to work with young children in child care settings. Data from initial and follow-up interviews were analysed to understand change over time in professional identity. Findings indicated a need for training institutions and workplaces to move beyond competency-based training approaches to include more critically reflective learning opportunities. Such a focus on critical reflection has implications for improving the skills, status, and recognition of child care practitioners as educators.
Resumo:
Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH3C CCH3) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH3 loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP + 2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C-4 side-chain, followed by cyclization and/or low-energy H atom beta-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph center dot)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH3 loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).
Resumo:
Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].