974 resultados para Terrain vague
Resumo:
Forest canopies are important components of the terrestrial carbon budget, which has motivated a worldwide effort, FLUXNET, to measure CO2 exchange between forests and the atmosphere. These measurements are difficult to interpret and to scale up to estimate exchange across a landscape. Here we review the effects of complex terrain on the mean flow, turbulence, and scalar exchange in canopy flows, as exemplified by adjustment to forest edges and hills, including the effects of stable stratification. We focus on the fundamental fluid mechanics, in which developments in theory, measurements, and modeling, particularly through large-eddy simulation, are identifying important processes and providing scaling arguments. These developments set the stage for the development of predictive models that can be used in combination with measurements to estimate exchange at the landscape scale.
Resumo:
Risk and uncertainty are, to say the least, poorly considered by most individuals involved in real estate analysis - in both development and investment appraisal. Surveyors continue to express 'uncertainty' about the value (risk) of using relatively objective methods of analysis to account for these factors. These methods attempt to identify the risk elements more explicitly. Conventionally this is done by deriving probability distributions for the uncontrolled variables in the system. A suggested 'new' way of "being able to express our uncertainty or slight vagueness about some of the qualitative judgements and not entirely certain data required in the course of the problem..." uses the application of fuzzy logic. This paper discusses and demonstrates the terminology and methodology of fuzzy analysis. In particular it attempts a comparison of the procedures with those used in 'conventional' risk analysis approaches and critically investigates whether a fuzzy approach offers an alternative to the use of probability based analysis for dealing with aspects of risk and uncertainty in real estate analysis
Resumo:
Synoptic climatology relates the atmospheric circulation with the surface environment. The aim of this study is to examine the variability of the surface meteorological patterns, which are developing under different synoptic scale categories over a suburban area with complex topography. Multivariate Data Analysis techniques were performed to a data set with surface meteorological elements. Three principal components related to the thermodynamic status of the surface environment and the two components of the wind speed were found. The variability of the surface flows was related with atmospheric circulation categories by applying Correspondence Analysis. Similar surface thermodynamic fields develop under cyclonic categories, which are contrasted with the anti-cyclonic category. A strong, steady wind flow characterized by high shear values develops under the cyclonic Closed Low and the anticyclonic H–L categories, in contrast to the variable weak flow under the anticyclonic Open Anticyclone category.
Resumo:
The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.
Resumo:
This letter presents an effective approach for selection of appropriate terrain modeling methods in forming a digital elevation model (DEM). This approach achieves a balance between modeling accuracy and modeling speed. A terrain complexity index is defined to represent a terrain's complexity. A support vector machine (SVM) classifies terrain surfaces into either complex or moderate based on this index associated with the terrain elevation range. The classification result recommends a terrain modeling method for a given data set in accordance with its required modeling accuracy. Sample terrain data from the lunar surface are used in constructing an experimental data set. The results have shown that the terrain complexity index properly reflects the terrain complexity, and the SVM classifier derived from both the terrain complexity index and the terrain elevation range is more effective and generic than that designed from either the terrain complexity index or the terrain elevation range only. The statistical results have shown that the average classification accuracy of SVMs is about 84.3% ± 0.9% for terrain types (complex or moderate). For various ratios of complex and moderate terrain types in a selected data set, the DEM modeling speed increases up to 19.5% with given DEM accuracy.
Resumo:
Sergio Tenenbaum and Diana Raffman contend that ‘vague projects’ motivate radical revisions to orthodox, utility-maximising rational choice theory. Their argument cannot succeed if such projects merely ground instances of the paradox of the sorites, or heap. Tenenbaum and Raffman are not blind to this, and argue that Warren Quinn’s Puzzle of the Self-Torturer does not rest on the sorites. I argue that their argument both fails to generalise to most vague projects, and is ineffective in the case of the Self-Torturer itself.
Resumo:
In this study, the crosswind (wind component perpendicular to a path, U⊥) is measured by a scintillometer and estimated with Doppler lidar above the urban environment of Helsinki, Finland, for 15 days. The scintillometer allows acquisition of a path-averaged value of U⊥ (U⊥), while the lidar allows acquisition of path-resolved U⊥ (U⊥ (x), where x is the position along the path). The goal of this study is to evaluate the performance of scintillometer U⊥ estimates for conditions under which U⊥ (x) is variable. Two methods are applied to estimate U⊥ from the scintillometer signal: the cumulative-spectrum method (relies on scintillation spectra) and the look-up-table method (relies on time-lagged correlation functions). The values of U⊥ of both methods compare well with the lidar estimates, with root-mean-square deviations of 0.71 and 0.73 m s−1. This indicates that, given the data treatment applied in this study, both measurement technologies are able to obtain estimates of U⊥ in the complex urban environment. The detailed investigation of four cases indicates that the cumulative-spectrum method is less susceptible to a variable U⊥ (x) than the look-up-table method. However, the look-up-table method can be adjusted to improve its capabilities for estimating U⊥ under conditions under for which U⊥ (x) is variable.
Resumo:
A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.
Resumo:
Terrain following coordinates are widely used in operational models but the cut cell method has been proposed as an alternative that can more accurately represent atmospheric dynamics over steep orography. Because the type of grid is usually chosen during model implementation, it becomes necessary to use different models to compare the accuracy of different grids. In contrast, here a C-grid finite volume model enables a like-for-like comparison of terrain following and cut cell grids. A series of standard two-dimensional tests using idealised terrain are performed: tracer advection in a prescribed horizontal velocity field, a test starting from resting initial conditions, and orographically induced gravity waves described by nonhydrostatic dynamics. In addition, three new tests are formulated: a more challenging resting atmosphere case, and two new advection tests having a velocity field that is everywhere tangential to the terrain following coordinate surfaces. These new tests present a challenge on cut cell grids. The results of the advection tests demonstrate that accuracy depends primarily upon alignment of the flow with the grid rather than grid orthogonality. A resting atmosphere is well-maintained on all grids. In the gravity waves test, results on all grids are in good agreement with existing results from the literature, although terrain following velocity fields lead to errors on cut cell grids. Due to semi-implicit timestepping and an upwind-biased, explicit advection scheme, there are no timestep restrictions associated with small cut cells. We do not find the significant advantages of cut cells or smoothed coordinates that other authors find.
Resumo:
This paper presents the groundwater favorability mapping on a fractured terrain in the eastern portion of Sao Paulo State, Brazil. Remote sensing, airborne geophysical data, photogeologic interpretation, geologic and geomorphologic maps and geographic information system (GIS) techniques have been used. The results of cross-tabulation between these maps and well yield data allowed groundwater prospective parameters in a fractured-bedrock aquifer. These prospective parameters are the base for the favorability analysis whose principle is based on the knowledge-driven method. The mutticriteria analysis (weighted linear combination) was carried out to give a groundwater favorabitity map, because the prospective parameters have different weights of importance and different classes of each parameter. The groundwater favorability map was tested by cross-tabulation with new well yield data and spring occurrence. The wells with the highest values of productivity, as well as all the springs occurrence are situated in the excellent and good favorabitity mapped areas. It shows good coherence between the prospective parameters and the well yield and the importance of GIS techniques for definition of target areas for detail study and wells location. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Vague words and expressions are present throughout the standards that comprise the accounting and auditing professions. Vagueness is considered to be a significant source of inexactness in many accounting decision problems and many authors have argued that the neglect of this issue may cause accounting information to be less useful. On the other hand, we can assume that the use of vague terms in accounting standards is inherent to principle based standards (different from rule based standards) and that to avoid vague terms, standard setters would have to incur excessive transaction costs. Auditors are required to exercise their own professional judgment throughout the audit process and it has been argued that the inherent vagueness in accounting standards may influence their decision making processes. The main objective of this paper is to analyze the decision making process of auditors and to investigate whether vague accounting standards create a problem for the decision making process of auditors, or lead to a better outcome. This paper makes the argument that vague standards prompt the use of System 2 type processing by auditors, allowing more comprehensive analytical thinking; therefore, reducing the biases associated with System 1 heuristic processing. If our argument is valid, the repercussions of vague accounting standards are not as negative as presented in previous literature, instead they are positive.
Resumo:
A técnica de agricultura de precisão e a relação solo-paisagem permitem delimitar áreas para o manejo localizado, o que permite a aplicação localizada de insumos agrícolas e, consequentemente, pode contribuir para a preservação de recursos naturais. Portanto, o objetivo deste trabalho foi caracterizar a variabilidade espacial das propriedades químicas e do teor de argila, no contexto da relação solo-paisagem, em um Latossolo sob cultivo de citros. Amostras de solo foram coletadas na profundidade de 0,0-0,2 m, em uma área de 83,5 ha cultivada com citros, na forma de malha, com intervalos regulares de 50 m, com 129 pontos na forma de relevo côncava e 206 pontos na forma plana, totalizando 335 pontos. Os valores obtidos para as variáveis que expressam as propriedades químicas e para o teor de argila do solo foram submetidos à análise estatística descritiva e geoestatística com a modelagem de semivariogramas para a confecção de mapas de krigagem. Os valores de alcance e mapas de krigagem indicaram maiores variabilidades na forma de relevo côncava (segmento topo), quando comparada com a forma plana (segmentos meia encosta e encosta inferior). A identificação de diferentes formas de relevo mostrou-se eficiente no entendimento da variabilidade espacial das propriedades químicas e do teor de argila do solo sob cultivo de citros.
Resumo:
O presente trabalho teve como objetivo avaliar o desempenho operacional de quatro tratores agrícolas com tração dianteira auxiliar, em função de seis inclinações laterais, em uma pista lateral de ensaios, pertencente à Faculdade de Ciências Agronômicas da Universidade Estadual Paulista, Câmpus de Botucatu. As inclinações laterais foram 0; 5; 10; 15; 20 e 25 graus. em todas estas situações, os tratores operaram com carga predeterminada de tração imposta ao trator tracionado de 40 kN na inclinação de 0 grau. Portanto, foi utilizado um delineamento em blocos casualizados (DBC), sendo seis inclinações e quatro tratores, e com três repetições para cada tratamento. As variáveis analisadas foram patinhagem, força de tração, consumo horário de combustível e velocidade de deslocamento. Concluiu-se que a configuração dos rodados pneumáticos influenciaram no desempenho operacional dos tratores, conforme aumentaram as inclinações laterais do terreno.