978 resultados para Tensor of the Affine Deformation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vickers and nano indentations were performed on a structurally relaxed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in the relaxed BMG was investigated and compared to that in the as-cast alloy. Results indicate that the plastic deformation in the BMG with structure relaxation is accommodated by the semicircular (primary) and radial (secondary) as well as tertiary shear bands. Quantitatively, the shear band density in the relaxed alloy was much lower than that in the as-cast alloy. The annihilation of free volume caused by the annealing was responsible for the embrittlement of the sample with structure relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present investigation was to determine the orientation dependence of substructure characteristics in an austenitic Fe−30wt%Ni model alloy subjected to hot plane strain compression. Deformation was carried out at a temperature of 950 °C using a strain rate of 10 s−1 to equivalent strain levels of approximately 0.2, 0.4, 0.6 and 0.8. The specimens obtained were analysed using a fully automatic electron backscatter diffraction technique. The crystallographic texture was characterized for all the strain levels studied and the subgrain structure was quantified in detail at a strain of 0.4. The substructure characteristics displayed pronounced orientation dependence. The major texture components, namely the copper, S, brass, Goss and rotated Goss, generally contained one or two prominent families of parallel larger-angle extended subboundaries, the traces of which on the longitudinal viewing plane appeared systematically aligned along the {111} slip plane traces, bounding long microbands subdivided into slightly elongated subgrains by short lower-angle transverse subboundaries. Relatively rare cube-orientated grains displayed pronounced subdivision into coarse deformation bands containing large, low-misorientated subgrains. The misorientation vectors across subboundaries largely showed a tendency to cluster around the sample transverse direction. Apart from the rotated Goss texture component, the stored energy levels for the remaining components were principally consistent with the corresponding Taylor factor values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of steel undergoing hot deformation was examined with the aim of better understanding the softening mechanisms operating during industrial hot strip rolling. These softening mechanisms can significantly influence the deformation force required to attain a given reduction in thickness, and this work answered a number of questions with regard to the transition between softening mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis introduces a novel way of writing polynomial invariants as network graphs, and applies this diagrammatic notation scheme, in conjunction with graph theory, to derive algorithms for constructing relationships (syzygies) between different invariants. These algorithms give rise to a constructive solution of a longstanding classical problem in invariant theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interrupted hot compression tests are employed to examine the kinetics of recrystallization in magnesium alloy Mg–3Al–1Zn. It is found that recrystallization results in an increase in the flow stress encountered in subsequent deformation. The increase in flow stress is used to infer the fraction of recrystallization and empirical equations are developed to describe the kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compared two potential model alloys, 304 stainless steel and Ni-30wt.%Fe, to study the behaviour of austenite during the thermo-mechanical processing of steel. The deformation behaviour as well as the textural and microstructural evolution was characterised in detail over a wide range of deformation conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during thermomechanical processing of metallic materials requires knowledge of the internal state variable data, such as microstructure, texture, and dislocation substructure characteristics, over a range of processing conditions. This is a particular problem for steels, where transformation of the austenite to a variety of transformation products eradicates the hot deformed microstructure. This article reports on a model Fe-30wt% Ni-based alloy, which retains a stable austenitic structure at room temperature, and has, therefore, been used to model the development of austenite microstructure during hot deformation of conventional low carbon-manganese steels. It also provides an excellent model alloy system for microalloy additions. Evolution of the microstructure and crystallographic texture was characterized in detail using optical microscopy, X-ray diffraction (XRD), SEM, EBSD, and TEM. The dislocation substructure has been quantified as a function of crystallographic texture component for a variety of deformation conditions for the Fe-30% Ni-based alloy. An extension to this study, as the use of a microalloyed Fe-30% Ni-Nb alloy in which the strain induced precipitation mechanism was studied directly. The work has shown that precipitation can occur at a much finer scale and higher number density than hitherto considered, but that pipe diffusion leads to rapid coarsening. The implications of this for model development are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two curved surfaces of molecularly smooth mica are brought into contact under a controlled load, and their deformed shape is measured using optical interference fringes of equal chromatic order. This technique allows exceptionally accurate measurements of surface profiles at separations down to a molecular scale. Contact between the surfaces can be made either adhesive or nonadhesive by suitable choice of the medium between them. Results have been obtained in both cases and compared with the theories of Hertz (nonadhesive contact) and Johnson, Kendall, and Roberts (adhesive contact).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning white beam X-ray microdiffraction has been used to study the heterogeneous grain deformation in a polycrystalline Mg alloy (MgAZ31). The high spatial resolution achieved on beamline 7.3.3 at the Advanced Light Source provides a unique method to measure the elastic strain and orientation of single grains as a function of applied load. To carry out in-situ measurements a light weight (~0.5kg) tensile stage, capable of providing uniaxial loads of up to 600kg, was designed to collect diffraction data on the loading and unloading cycle. In-situ observation of the deformation process provides insight about the crystallographic deformation mode via twinning and dislocation slip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behaviour of Fe-18Mn-0.6C-1Al (wt%) TWIP steel was modelled in the temperature range from room temperature to 400°C. The proposed constitutive model was based on the Kocks-Mecking-Estrin (KME) model. The model parameters were determined using extensive experimental measurements of the physical parameters such as the dislocation mean free path and the volume fraction of twinned grains. More than 100 grains with a total area of ~300μm2 were examined at different strain levels over the entire stress-strain curve. Uniaxial tensile deformation of the TWIP steel was modelled for different deformation temperatures using a modelling approach which considers two distinct populations of grains: twinned and twin-free ones. A key point of the work was a meticulous experimental determination of the evolution of the volume fraction of twinned grains during uniaxial tensile deformation. This information was implemented in a phase-mixture model that yielded a very good agreement with the experimental tensile behaviour for the tested range of deformation temperatures. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcompression tests were performed on monolithic Cu and Fe thin films and a Cu/Fe multilayer that had each individual layer of 200 nm thick, to understand the mechanical behaviour of multiple nanolayers. The micron-sized pillars were prepared by focused-ion beam (FIB) technique and compressed with a flat punch in a nanoindenter. The flow curves of the monolithic Cu and Fe thin films and Cu/Fe multilayer were extracted from the microcompression tests. The monolithic Cu thin film bulges in the top region of the pillar, while the Fe thin film cracks due to its columnar grain structure. For the Cu/Fe multilayer, the ductile Cu layers accommodate the majority of plastic deformation upon compression, while cracking in the Fe layers leads to the failure of the multilayer. Finite element models of microcompression tests were also developed to provide insights into the deformation behaviours of the multilayer and monolithic thin films. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.