185 resultados para Telescopes.
Resumo:
The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E-nu between 10(17) eV and 10(20) eV from point-like sources across the sky south of +55 degrees and north of -65 degrees declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of similar to 3.5 years of a full surface detector array for the Earth-skimming channel and similar to 2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k(PS) . E-nu(-2). from a point-like source, 90% confidence level upper limits for k(PS) at the level of approximate to 5x10(-7) and 2.5x10(-6) GeV cm(-2) s(-1) have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.
Resumo:
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project.
Resumo:
Thanks to the Chandra and XMM–Newton surveys, the hard X-ray sky is now probed down to a flux limit where the bulk of the X-ray background is almost completely resolved into discrete sources, at least in the 2–8 keV band. Extensive programs of multiwavelength follow-up observations showed that the large majority of hard X–ray selected sources are identified with Active Galactic Nuclei (AGN) spanning a broad range of redshifts, luminosities and optical properties. A sizable fraction of relatively luminous X-ray sources hosting an active, presumably obscured, nucleus would not have been easily recognized as such on the basis of optical observations because characterized by “peculiar” optical properties. In my PhD thesis, I will focus the attention on the nature of two classes of hard X-ray selected “elusive” sources: those characterized by high X-ray-to-optical flux ratios and red optical-to-near-infrared colors, a fraction of which associated with Type 2 quasars, and the X-ray bright optically normal galaxies, also known as XBONGs. In order to characterize the properties of these classes of elusive AGN, the datasets of several deep and large-area surveys have been fully exploited. The first class of “elusive” sources is characterized by X-ray-to-optical flux ratios (X/O) significantly higher than what is generally observed from unobscured quasars and Seyfert galaxies. The properties of well defined samples of high X/O sources detected at bright X–ray fluxes suggest that X/O selection is highly efficient in sampling high–redshift obscured quasars. At the limits of deep Chandra surveys (∼10−16 erg cm−2 s−1), high X/O sources are generally characterized by extremely faint optical magnitudes, hence their spectroscopic identification is hardly feasible even with the largest telescopes. In this framework, a detailed investigation of their X-ray properties may provide useful information on the nature of this important component of the X-ray source population. The X-ray data of the deepest X-ray observations ever performed, the Chandra deep fields, allows us to characterize the average X-ray properties of the high X/O population. The results of spectral analysis clearly indicate that the high X/O sources represent the most obscured component of the X–ray background. Their spectra are harder (G ∼ 1) than any other class of sources in the deep fields and also of the XRB spectrum (G ≈ 1.4). In order to better understand the AGN physics and evolution, a much better knowledge of the redshift, luminosity and spectral energy distributions (SEDs) of elusive AGN is of paramount importance. The recent COSMOS survey provides the necessary multiwavelength database to characterize the SEDs of a statistically robust sample of obscured sources. The combination of high X/O and red-colors offers a powerful tool to select obscured luminous objects at high redshift. A large sample of X-ray emitting extremely red objects (R−K >5) has been collected and their optical-infrared properties have been studied. In particular, using an appropriate SED fitting procedure, the nuclear and the host galaxy components have been deconvolved over a large range of wavelengths and ptical nuclear extinctions, black hole masses and Eddington ratios have been estimated. It is important to remark that the combination of hard X-ray selection and extreme red colors is highly efficient in picking up highly obscured, luminous sources at high redshift. Although the XBONGs do not present a new source population, the interest on the nature of these sources has gained a renewed attention after the discovery of several examples from recent Chandra and XMM–Newton surveys. Even though several possibilities were proposed in recent literature to explain why a relatively luminous (LX = 1042 − 1043erg s−1) hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the very nature of XBONGs is still subject of debate. Good-quality photometric near-infrared data (ISAAC/VLT) of 4 low-redshift XBONGs from the HELLAS2XMMsurvey have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique. In two out of the four sources, the presence of a nuclear weak component hosted by a bright galaxy has been revealed. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4p) at the nuclear source, may explain the lack of optical emission lines. A weak nucleus not able to produce suffcient UV photons may provide an alternative or additional explanation. On the basis of an admittedly small sample, we conclude that XBONGs constitute a mixed bag rather than a new source population. When the presence of a nucleus is revealed, it turns out to be mildly absorbed and hosted by a bright galaxy.
Resumo:
An Adaptive Optic (AO) system is a fundamental requirement of 8m-class telescopes. We know that in order to obtain the maximum possible resolution allowed by these telescopes we need to correct the atmospheric turbulence. Thanks to adaptive optic systems we are able to use all the effective potential of these instruments, drawing all the information from the universe sources as best as possible. In an AO system there are two main components: the wavefront sensor (WFS) that is able to measure the aberrations on the incoming wavefront in the telescope, and the deformable mirror (DM) that is able to assume a shape opposite to the one measured by the sensor. The two subsystem are connected by the reconstructor (REC). In order to do this, the REC requires a “common language" between these two main AO components. It means that it needs a mapping between the sensor-space and the mirror-space, called an interaction matrix (IM). Therefore, in order to operate correctly, an AO system has a main requirement: the measure of an IM in order to obtain a calibration of the whole AO system. The IM measurement is a 'mile stone' for an AO system and must be done regardless of the telescope size or class. Usually, this calibration step is done adding to the telescope system an auxiliary artificial source of light (i.e a fiber) that illuminates both the deformable mirror and the sensor, permitting the calibration of the AO system. For large telescope (more than 8m, like Extremely Large Telescopes, ELTs) the fiber based IM measurement requires challenging optical setups that in some cases are also impractical to build. In these cases, new techniques to measure the IM are needed. In this PhD work we want to check the possibility of a different method of calibration that can be applied directly on sky, at the telescope, without any auxiliary source. Such a technique can be used to calibrate AO system on a telescope of any size. We want to test the new calibration technique, called “sinusoidal modulation technique”, on the Large Binocular Telescope (LBT) AO system, which is already a complete AO system with the two main components: a secondary deformable mirror with by 672 actuators, and a pyramid wavefront sensor. My first phase of PhD work was helping to implement the WFS board (containing the pyramid sensor and all the auxiliary optical components) working both optical alignments and tests of some optical components. Thanks to the “solar tower” facility of the Astrophysical Observatory of Arcetri (Firenze), we have been able to reproduce an environment very similar to the telescope one, testing the main LBT AO components: the pyramid sensor and the secondary deformable mirror. Thanks to this the second phase of my PhD thesis: the measure of IM applying the sinusoidal modulation technique. At first we have measured the IM using a fiber auxiliary source to calibrate the system, without any kind of disturbance injected. After that, we have tried to use this calibration technique in order to measure the IM directly “on sky”, so adding an atmospheric disturbance to the AO system. The results obtained in this PhD work measuring the IM directly in the Arcetri solar tower system are crucial for the future development: the possibility of the acquisition of IM directly on sky means that we are able to calibrate an AO system also for extremely large telescope class where classic IM measurements technique are problematic and, sometimes, impossible. Finally we have not to forget the reason why we need this: the main aim is to observe the universe. Thanks to these new big class of telescopes and only using their full capabilities, we will be able to increase our knowledge of the universe objects observed, because we will be able to resolve more detailed characteristics, discovering, analyzing and understanding the behavior of the universe components.
Resumo:
The Italian radio telescopes currently undergo a major upgrade period in response to the growing demand for deep radio observations, such as surveys on large sky areas or observations of vast samples of compact radio sources. The optimised employment of the Italian antennas, at first constructed mainly for VLBI activities and provided with a control system (FS – Field System) not tailored to single-dish observations, required important modifications in particular of the guiding software and data acquisition system. The production of a completely new control system called ESCS (Enhanced Single-dish Control System) for the Medicina dish started in 2007, in synergy with the software development for the forthcoming Sardinia Radio Telescope (SRT). The aim is to produce a system optimised for single-dish observations in continuum, spectrometry and polarimetry. ESCS is also planned to be installed at the Noto site. A substantial part of this thesis work consisted in designing and developing subsystems within ESCS, in order to provide this software with tools to carry out large maps, spanning from the implementation of On-The-Fly fast scans (following both conventional and innovative observing strategies) to the production of single-dish standard output files and the realisation of tools for the quick-look of the acquired data. The test period coincided with the commissioning phase for two devices temporarily installed – while waiting for the SRT to be completed – on the Medicina antenna: a 18-26 GHz 7-feed receiver and the 14-channel analogue backend developed for its use. It is worth stressing that it is the only K-band multi-feed receiver at present available worldwide. The commissioning of the overall hardware/software system constituted a considerable section of the thesis work. Tests were led in order to verify the system stability and its capabilities, down to sensitivity levels which had never been reached in Medicina using the previous observing techniques and hardware devices. The aim was also to assess the scientific potential of the multi-feed receiver for the production of wide maps, exploiting its temporary availability on a mid-sized antenna. Dishes like the 32-m antennas at Medicina and Noto, in fact, offer the best conditions for large-area surveys, especially at high frequencies, as they provide a suited compromise between sufficiently large beam sizes to cover quickly large areas of the sky (typical of small-sized telescopes) and sensitivity (typical of large-sized telescopes). The KNoWS (K-band Northern Wide Survey) project is aimed at the realisation of a full-northern-sky survey at 21 GHz; its pilot observations, performed using the new ESCS tools and a peculiar observing strategy, constituted an ideal test-bed for ESCS itself and for the multi-feed/backend system. The KNoWS group, which I am part of, supported the commissioning activities also providing map-making and source-extraction tools, in order to complete the necessary data reduction pipeline and assess the general system scientific capabilities. The K-band observations, which were carried out in several sessions along the December 2008-March 2010 period, were accompanied by the realisation of a 5 GHz test survey during the summertime, which is not suitable for high-frequency observations. This activity was conceived in order to check the new analogue backend separately from the multi-feed receiver, and to simultaneously produce original scientific data (the 6-cm Medicina Survey, 6MS, a polar cap survey to complete PMN-GB6 and provide an all-sky coverage at 5 GHz).
Resumo:
The Adaptive Optics is the measurement and correction in real time of the wavefront aberration of the star light caused by the atmospheric turbulence, that limits the angular resolution of ground based telescopes and thus their capabilities to deep explore faint and crowded astronomical objects. The lack of natural stars enough bright to be used as reference sources for the Adaptive Optics, over a relevant fraction of the sky, led to the introduction of artificial reference stars. The so-called Laser Guide Stars are produced by exciting the Sodium atoms in a layer laying at 90km of altitude, by a powerful laser beam projected toward the sky. The possibility to turn on a reference star close to the scientific targets of interest has the drawback in an increased difficulty in the wavefront measuring, mainly due to the time instability of the Sodium layer density. These issues are increased with the telescope diameter. In view of the construction of the 42m diameter European Extremely Large Telescope a detailed investigation of the achievable performances of Adaptive Optics becomes mandatory to exploit its unique angular resolution . The goal of this Thesis was to present a complete description of a laboratory Prototype development simulating a Shack-Hartmann wavefront sensor using Laser Guide Stars as references, in the expected conditions for a 42m telescope. From the conceptual design, through the opto-mechanical design, to the Assembly, Integration and Test, all the phases of the Prototype construction are explained. The tests carried out shown the reliability of the images produced by the Prototype that agreed with the numerical simulations. For this reason some possible upgrades regarding the opto-mechanical design are presented, to extend the system functionalities and let the Prototype become a more complete test bench to simulate the performances and drive the future Adaptive Optics modules design.
Resumo:
This thesis concerns the study of the variable stars and resolved stellar populations in four recently discovered dSphs, namely, Hercules and Ursa Major I (UMa I), which are UFD satellites of the MW; Andromeda XIX (And XIX) and Andromeda XXI (And XXI), which are satellites of M31. The main aim is to obtain detailed informations on the properties (age, metallicity, distance, and Oosterhoff type) of the stellar populations in these galaxies, to compare them with those of other satellites around the MW and M31, both ''classical'' dSphs and UFDs. The observables used to achieve these goals are the pulsating variables, especially the RR Lyrae stars, and the color magnitude diagram (CMD) of the resolved stellar populations. In particular, for UMa I, we combined B, V time-series observations from four different ground-based telescopes (Cassini, TLS, TT1 and Subaru) and for Hercules, we used archival data acquired with the Advanced Camera for Surveys (ACS) on board the HST. We used, instead B and V times-series photometry obtained with the Large Binocular Telescope (LBT) for And XIX and And XXI .
Resumo:
Supernovae are among the most energetic events occurring in the universe and are so far the only verified extrasolar source of neutrinos. As the explosion mechanism is still not well understood, recording a burst of neutrinos from such a stellar explosion would be an important benchmark for particle physics as well as for the core collapse models. The neutrino telescope IceCube is located at the Geographic South Pole and monitors the antarctic glacier for Cherenkov photons. Even though it was conceived for the detection of high energy neutrinos, it is capable of identifying a burst of low energy neutrinos ejected from a supernova in the Milky Way by exploiting the low photomultiplier noise in the antarctic ice and extracting a collective rate increase. A signal Monte Carlo specifically developed for water Cherenkov telescopes is presented. With its help, we will investigate how well IceCube can distinguish between core collapse models and oscillation scenarios. In the second part, nine years of data taken with the IceCube precursor AMANDA will be analyzed. Intensive data cleaning methods will be presented along with a background simulation. From the result, an upper limit on the expected occurrence of supernovae within the Milky Way will be determined.
Resumo:
Millisecond Pulsars (MSPs) are fast rotating, highly magnetized neutron stars. According to the "canonical recycling scenario", MSPs form in binary systems containing a neutron star which is spun up through mass accretion from the evolving companion. Therefore, the final stage consists of a binary made of a MSP and the core of the deeply peeled companion. In the last years, however an increasing number of systems deviating from these expectations has been discovered, thus strongly indicating that our understanding of MSPs is far to be complete. The identification of the optical companions to binary MSPs is crucial to constrain the formation and evolution of these objects. In dense environments such as Globular Clusters (GCs), it also allows us to get insights on the cluster internal dynamics. By using deep photometric data, acquired both from space and ground-based telescopes, we identified 5 new companions to MSPs. Three of them being located in GCs and two in the Galactic Field. The three new identifications in GCs increased by 50% the number of such objects known before this Thesis. They all are non-degenerate stars, at odds with the expectations of the "canonical recycling scenario". These results therefore suggest either that transitory phases should also be taken into account, or that dynamical processes, as exchange interactions, play a crucial role in the evolution of MSPs. We also performed a spectroscopic follow-up of the companion to PSRJ1740-5340A in the GC NGC 6397, confirming that it is a deeply peeled star descending from a ~0.8Msun progenitor. This nicely confirms the theoretical expectations about the formation and evolution of MSPs.
Resumo:
CONCLUSION: Endoscopic resection of laryngeal and tracheal lesions using the microdebrider is a safe, accurate and reliable method. OBJECTIVE: The microdebrider is an important tool for endoscopic nasal and sinus surgery and over the last few years a powered blade with a long shaft has been developed for endoscopic laryngeal and tracheal surgery. The aim of this non-randomized prospective study was to determine the advantages and disadvantages of the microdebrider for treating patients with different laryngeal and tracheal pathologies. MATERIAL AND METHODS: The laryngeal microdebrider was used under endoscopic control in 37 patients. In 29 cases a benign laryngeal lesion was removed endoscopically. In four patients debulking of a malignant obstructive endolaryngeal tumor was performed in order to avoid a tracheotomy. In four cases a bulky obstructing endotracheal lesion was removed. RESULTS: All laryngotracheal lesions could be removed, and this was facilitated by the use of angled rigid telescopes and the laryngeal blade. No traumatic lesions to normal laryngeal tissue occurred as a result of use of the microdebrider and no postoperative endolaryngeal bleeding was observed. The histological diagnosis of the biopsies taken with the microdebrider was accurate in every case. In three of the four cases with obstructive laryngeal malignancies, a tracheotomy was avoided until definitive therapy was undertaken. Normal breathing was restored in all patients with endotracheal lesions.
Resumo:
In this dissertation, the problem of creating effective large scale Adaptive Optics (AO) systems control algorithms for the new generation of giant optical telescopes is addressed. The effectiveness of AO control algorithms is evaluated in several respects, such as computational complexity, compensation error rejection and robustness, i.e. reasonable insensitivity to the system imperfections. The results of this research are summarized as follows: 1. Robustness study of Sparse Minimum Variance Pseudo Open Loop Controller (POLC) for multi-conjugate adaptive optics (MCAO). The AO system model that accounts for various system errors has been developed and applied to check the stability and performance of the POLC algorithm, which is one of the most promising approaches for the future AO systems control. It has been shown through numerous simulations that, despite the initial assumption that the exact system knowledge is necessary for the POLC algorithm to work, it is highly robust against various system errors. 2. Predictive Kalman Filter (KF) and Minimum Variance (MV) control algorithms for MCAO. The limiting performance of the non-dynamic Minimum Variance and dynamic KF-based phase estimation algorithms for MCAO has been evaluated by doing Monte-Carlo simulations. The validity of simple near-Markov autoregressive phase dynamics model has been tested and its adequate ability to predict the turbulence phase has been demonstrated both for single- and multiconjugate AO. It has also been shown that there is no performance improvement gained from the use of the more complicated KF approach in comparison to the much simpler MV algorithm in the case of MCAO. 3. Sparse predictive Minimum Variance control algorithm for MCAO. The temporal prediction stage has been added to the non-dynamic MV control algorithm in such a way that no additional computational burden is introduced. It has been confirmed through simulations that the use of phase prediction makes it possible to significantly reduce the system sampling rate and thus overall computational complexity while both maintaining the system stable and effectively compensating for the measurement and control latencies.
Resumo:
PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
Resumo:
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T eq up to 2,000 K, to those of a few Earth masses, with T eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.
Resumo:
Stray light contamination reduces considerably the precision of photometric of faint stars for low altitude spaceborne observatories. When measuring faint objects, the necessity of coping with stray light contamination arises in order to avoid systematic impacts on low signal-to-noise images. Stray light contamination can be represented by a flat offset in CCD data. Mitigation techniques begin by a comprehensive study during the design phase, followed by the use of target pointing optimisation and post-processing methods. We present a code that aims at simulating the stray-light contamination in low-Earth orbit coming from reflexion of solar light by the Earth. StrAy Light SimulAtor (SALSA) is a tool intended to be used at an early stage as a tool to evaluate the effective visible region in the sky and, therefore to optimise the observation sequence. SALSA can compute Earth stray light contamination for significant periods of time allowing missionwide parameters to be optimised (e.g. impose constraints on the point source transmission function (PST) and/or on the altitude of the satellite). It can also be used to study the behaviour of the stray light at different seasons or latitudes. Given the position of the satellite with respect to the Earth and the Sun, SALSA computes the stray light at the entrance of the telescope following a geometrical technique. After characterising the illuminated region of the Earth, the portion of illuminated Earth that affects the satellite is calculated. Then, the flux of reflected solar photons is evaluated at the entrance of the telescope. Using the PST of the instrument, the final stray light contamination at the detector is calculated. The analysis tools include time series analysis of the contamination, evaluation of the sky coverage and an objects visibility predictor. Effects of the South Atlantic Anomaly and of any shutdown periods of the instrument can be added. Several designs or mission concepts can be easily tested and compared. The code is not thought as a stand-alone mission designer. Its mandatory inputs are a time series describing the trajectory of the satellite and the characteristics of the instrument. This software suite has been applied to the design and analysis of CHEOPS (CHaracterizing ExOPlanet Satellite). This mission requires very high precision photometry to detect very shallow transits of exoplanets. Different altitudes and characteristics of the detector have been studied in order to find the best parameters, that reduce the effect of contamination. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.