174 resultados para Telemetria aeroespacial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Measurement System Analysis (MSA - Measurement System Analysis) is a statistical methodology developed to study and analyze the behavior of the measurement systems, and, therefore, allow the increased of the confidence readings performed by measuring instruments. It’s widely used in the automotive industry since the 90’s and is a mandatory requirement for the approval of the parts according to ISO Standard of the automotive sector. However, the aerospace industry doesn’t require this type of Study, once which the vast majority of aeronautics parts have characteristics (dimensions) with very tight tolerances, closed, ie, at the home of microns. This work aims to create lists of recommendations for definitions of measuring instruments in developing of control plans, which correlates tolerances fields of characteristics for different settings and acceptance of the instrument, classified as optimum, recommended and not recommended, through of the study of R&R (Repeatability and Reproducibility) in aeronautics parts. Every methodology of the experimental part was based on modern strategy of continuous improvement, the DMAIC (Define Measure Analyze Implant Control), in order to achieve better measurement method used in the control of milling aeronautics parts, identifying and reducing the variations of the measurement process. The results of the R&R Study in large part of measuring instrument manuals were considered acceptable and/or recommended, ie with values of %P/T and %RR lower than 30%, providing statistical data which have enabled the elaboration of tables of recommendations, which, from this work, have turned into very important documents and aid for Process Engineering, having in their hands a technical study able to identify which is the most appropriate instrument to get a more robust dimensional... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monolithic glassy carbon is a carbonaceous material, isotropic, non graphitizable obtained by means of carbonization of resins up to 1000 °C. The good physicochemical properties make this material applied in several areas such as aerospace, medicine, electronics, chemistry, among others. It has generally been processed from the use of phenolic and furfuryl alcohol resins. These resins have high crosslink density and high fixed carbon content and are therefore widely applied in aerospace. The combination phenol / furfuryl alcohol resins search for obtaining the most suitable process for the glass-like carbon processing with phenolic resins currently available and of lower cost and easier to synthesize than the furfuryl alcohol resin. The main objective of this work is to obtain a phenol-furfuryl resin with high fixed carbon content combined with low porosity of the material. Different synthesis routes have been adopted along with thermal analysis techniques, FTIR and image analysis. The resin obtained through partial synthesis process presented the characteristics sought in this work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many approaches and techniques about Administration and Management of Projects in order to provide greater agility, efficiency and transparency during the development process of new products. Simultaneously, a pursuit for a management approach more flexible in its planning and strategic changes during the development campaign, such as, comprehend the project's unpredictability level and deal it by monitoring and estimates tools. These features tend to accentuate itself in manufacturers of complex products, as aircraft and other aerospace technologies. By these conditions thus research aims to describe a case when the Agile Management Processing of Project Development Scrum was used in the Test area of an aircraft manufacturer. Focused on the Scrum implementation over the area, its adaptation, evolution and achievements the research proposes to analyze the improvements, indicate the obstacles and discuss solutions, contributing then to the theoretical basis of the considered theme and futures updates applicable to the area. The research is classified as qualitative; furthermore the information and data analyzed were obtained by interviews with professionals and observations of the processes from the major aircraft manufacturer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nickel superalloys are known as being a material with poor machinability, they have some properties like high hardness, good resistance at high temperature, tendency to weld with the tool material at high temperature, etc. In the aerospace, biomedical and petrochemical industry, are increasing the need to use materials that resist to aggressive process and environment. In these uses, it has increased the use of nickel-based superalloys like Inconel 718 and consequently the need to research new techniques and tools to improve the machinability of this material. For the superalloys and resistant alloys at high temperatures is considered that the difficulty in the machining regards to the combination of the relatively high cutting forces and high temperatures that grow during the machine process, causing deformation or breakage of the cutting tool. This work purpose is to develop the study of the machining of external cylindrical turning of the nickel based alloy Inconel 718, using ceramic tools, seeking the optimization of machining this alloy, looking to provide real productive increases without the need of investments in new production means. The machining test were accomplished using commercials hard metal tools and the results were compared each other to find the best tool and the best parameter. The conclusion is that the tool TNMG160408-23 -class 1005- was the better one, when used with the parameter 60_15_08

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most usual method to fix supports that hold the vast majority of electrical cables on an aircraft is accomplished by using, for this purpose, rivets. However, this procedure may some cause some inconveniences such as the need of effecting holes in the structure that is intended to fix these supports, thus decreasing resistance of the structure. In order to have an alternative to seek an increase in the performance of structured materials, the aircraft industry, like other industries, have been studying the use of collage as a method of replacing this usual forms. Against this backdrop, this paper aims to assess the strength and durability of a joint bonded using the adhesive EA9394, manufactured by company Henkel Corporation, and perform a careful survey of the mechanical performance of riveted structures, taking into account different types of conditioning environment and thus create a database that can be used by the aerospace industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aims to study the characteristics of the alloy Al - 7 % Si - 0 , 3Mg ( AA356 ) , more specifically characterize the macrostructure and microstructure and mechanical properties of the alloy ingots AA356 obtained in metal molds and sand molds for power studying the structures through the difference of cooling rates . This alloy is explained by the fact of referring league has excellent combination of properties such as low solidification shrinkage and good fluidity, good weldability , high wear resistance , high strength to weight ratio, has wide application in general engineering , and particularly in the automotive and aerospace engineering . In this work we will verify this difference in properties through two different cooling rates . We monitor the solid solidification temperatures by thermocouples building with them the cooling curve as a tool that will aid us to evaluate the effectiveness of the grain refining because it achieved with some important properties of the alloy as the latent heat of solidification fraction the liquid and solid temperatures, the total solidification time, and identify the presence of inoculants for grain refinement. Thermal analysis will be supported by the study of graphic software “Origin “will be achieved where the cooling curve and its first derivative that is the cooling rate. Made thermal analysis, analysis will be made in macrographs ingots obtained for observation of macrostructures obtained in both types of ingots and also analysis of micrographs where sampling will occur in strategic positions ingots to correlate with the microstructure. Finally will be collecting data from Brinell hardness of ingots and so then correlating the properties of their respective ingots with cooling rate. We found that obtained with cast metal ingots showed superior properties to the ingots obtained with sand mold

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing application of structural composites in the aerospace industry is mainly due to its low specific weight coupled with its excellent mechanical properties when in service. As a result of climatic variations that pass the aircraft is of paramount importance to study the influence of weathering on this type of material when subjected to such changes. The purpose of this work is to evaluate the mechanical behavior of specimens of kevlar fiber /epoxy matrix composites, by dynamic mechanical thermal analysis (DMA) and interlaminar shear strength tests (ILSS), after passing through three environmental conditioning: saline fog, hygrothermal and ultraviolet radiation. From the results, we concluded that the laminate was molded supplied homogeneously, not presenting problems such as porosity, delaminations or cracks inside. After a period of 625 hours of exposure to hygrothermal conditioning, we observed a 1,2% maximum of absorption of moisture. Samples subjected to the conditioning by UV irradiation (600 hours) and salt spray showed a reduction of about 24,30% and 32,30%, respectively, on the shear strength (ILSS). In DMA analysis is not observed significant changes on the glass transition temperature. However, when considering the storage modulus of the samples conditioned by UV radiation (1200 hours), salt spray and hygrothermal conditioning there is an increase of 5,34% , 7,19% and 5,57% respectively

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atualmente o encalhe de filhotes órfãos representa uma das principais ameaças à conservação do peixe-boi marinho (Trichechus manatus manatus) no litoral nordeste do Brasil. O Projeto Peixe-boi resgata os filhotes encalhados, reabilita em cativeiro e reintroduz estes animais em áreas de ocorrência histórica e em locais onde a população está em declínio. Estudos sobre comportamento animal fornecem uma importante ferramenta para avaliação dos Programas de Reintrodução. Os trabalhos existentes sobre comportamento de peixes-boi marinhos em vida livre sujeitos a interações antrópicas restringem-se a animais nativos na Flórida. No Brasil, há estudos etológicos apenas com espécimes em cativeiro ou recinto em ambiente natural. O objetivo do trabalho foi verificar possíveis alterações comportamentais de peixes-boi reintroduzidos, ou seja, que passaram parte da vida em cativeiro e foram soltos em ambiente natural, em função de interações antrópicas. No período de Fevereiro a Julho de 2010, com o auxílio da radio-telemetria, uma fêmea e dois machos (8 anos de idade) foram observados diariamente, em períodos alternados, com a metodologia do “animal focal”. Para o monitoramento, utilizou-se bicicleta, caiaque e, em locais de difícil acesso, o mesmo foi feito a pé. Totalizou-se 114 horas de observação para Arani e 167 horas para Potiguar. As observações da fêmea Aira ficaram comprometidas em função da perda do equipamento de radio-telemetria. A análise dos dados mostrou uma alta freqüência de comportamentos de interação (mais de 50%) em relação aos demais comportamentos de função vital para os dois machos. Dessas interações, as com animais de mesma espécie e objeto atingiram elevadas freqüências. Verificou-se ainda que a categoria afiliativa foi predominante nas interações entre peixes-bois... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work will address the study of fatigue conditions with constant load in an alloy of aluminum analysis 7475 - T761, so we can better understand the conditions of the aircrafts which contain this alloy in their structures. A literature review, which was discussed the concepts of fracture mechanics, fatigue, aeronautical components, chemical analysis of aluminum alloys, fatigue problems that appears in the aircrafts, metallographic analysis, and testing of optical microscopy tensile, fatigue and microhardness, surface analysis (MEV) study of the chemical composition of the alloy in question, the main causes of crashes, was performed, completing the work, analysis of data from tensile test, hardness and fatigue together with the interpretation of images of optical microscopy and scanning electron was taken. The data indicated the high mechanical strength of the alloy, along with its microstructure indicating elongated grains and high surface contour, which shows such resistance by hindering the movement of dislocations. The grooves are clearly shown in the MEV images as well as the classic with increased fatigue loading and subsequent reduction of the number of cycles to rupture behavior shown in the graphs. Therefore we observed the optimal behavior is supported by the league when subjected to fatigue loadings

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)