881 resultados para Technische Hogeschool Delft. Mijnbouwkundige Vereniging
Resumo:
English
Resumo:
I am suspicious of tools without a purpose - tools that are not developed in response to a clearly defined problem. Of course tools without a purpose can still be useful. However the development of first generation CAD was seriously impeded because the solution came before the problem. We are in danger of repeating this mistake if we do not clarify the nature of the problem that we are trying to solve with the next generation of tools. Back in the 1980s I used to add a postscript slide at the end of CAD conference presentations and the applause would invariably turn to concern. The slide simple asked: can anyone remember what it was about design that needed aiding before we had computer aided design?
Resumo:
The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.
Resumo:
- This paper presents a validation proposal for development of diagnostic and prognostic algorithms for SF6 puffer circuit-breakers reproduced from actual site waveforms. The re-ignition/restriking rates are duplicated in given circuits and the cumulative energy dissipated in interrupters by the restriking currents. The targeted objective is to provide a simulated database for diagnosis of re-ignition/restrikes relating to the phase to earth voltage and the number of re-ignition/restrikes as well as estimating the remaining life of SF6 circuit-breakers. The model-based diagnosis of a tool will be useful in monitoring re-ignition/restrikes as well as predicting a nozzle’s lifetime. This will help ATP users with practical study cases and component data compilation for shunt reactor switching and capacitor switching. This method can be easily applied with different data for the different dielectric curves of circuit breakers and networks. This paper presents modelling details and some of the available cases, required project support, the validation proposal, the specific plan for implementation and the propsed main contributions.
Resumo:
This paper presents a database ATP (Alternative Transient Program) simulated waveforms for shunt reactor switching cases with vacuum breakers in motor circuits following interruption of the starting current. The targeted objective is to provide multiple reignition simulated data for diagnostic and prognostic algorithms development, but also to help ATP users with practical study cases and component data compilation for shunt reactor switching. This method can be easily applied with different data for the different dielectric curves of circuit-breakers and networks. This paper presents design details, discusses some of the available cases and the advantages of such simulated data.
Resumo:
We love the automobile and the independence that it gives us. We are more mobile than we have ever been before in recorded history. In Australia 80% of journeys are by private motor vehicle. But it is becoming increasingly obvious that this era has a very limited lifespan. Fuel prices have skyrocketed recently with no end in sight. In spite of massive amounts of road construction, our cities are becoming increasingly congested. We desperately need to address climate change and the automobile is a major contributor. Carbon trading schemes will put even more upward pressure on fuel prices. At some point in the near future, most of us will need to reconsider our automobile usage whether we like it or not. The time to plan for the future is now. But what will happen to our mobility when access to cheap and available petroleum becomes a thing of the past? Will we start driving electric/hydrogen/ethanol vehicles? Or will we flock to public transport? Will our public transport systems cope with a massive increase in demand? Will thousands of people take to alternatives such as bicycles? If so, where do we put them? How do we change our roads to cope? How do we change our buildings to suit? Will we need recharging stations in our car park for example? Some countries are less reliant on the car than others e.g. Holland and Germany. How can the rest of the world learn from them? This paper discusses many of the likely outcomes of the inevitable shift away from society’s reliance on petroleum and examines the expected impact on the built environment. It also looks at ways in which the built environment can be planned to help ease the transition to a fossil free world. 1.
Resumo:
Building integrated living systems (BILS), such as green roofs and living walls, could mitigate many of the challenges presented by climate change and biodiversity protection. However, few if any such systems have been constructed, and current tools for evaluating them are limited, especially under Australian subtropical conditions. BILS are difficult to assess, because living systems interact with complex, changing and site-specific social and environmental conditions. Our past research in design for eco-services has confirmed the need for better means of assessing the ecological values of BILS - let alone better models for assessing their thermal and hydrological performance. To address this problem, a research project is being developed jointly by researchers at the Central Queensland University (CQ University) and the Queensland University of Technology (QUT), along with industry collaborators. A mathematical model under development at CQ University will be applied and tested to determine its potential for predicting their complex, dynamic behaviour in different contexts. However, the paper focuses on the work at QUT. The QUT school of design is generating designs for living walls and roofs that provide a range of ecosystem goods and services, or ‘eco-services’, for a variety of micro-climates and functional contexts. The research at QUT aims to develop appropriate designs, virtual prototypes and quantitative methods for assessing the potential multiple benefits of BILS in subtropical climates. It is anticipated that the CQ University model for predicting thermal behaviour of living systems will provide a platform for the integration of ecological criteria and indicators. QUT will also explore means to predict and measure the value of eco-services provided by the systems, which is still largely uncharted territory. This research is ultimately intended to facilitate the eco-retrofitting of cities to increase natural capital and urban resource security - an essential component of sustainability. The talk will present the latest range of multifunctional, eco-productive living walls, roofs and urban space frames and their eco-services.
Resumo:
Sustainable development is about making societal investments. These investments should be in synchronization with the natural environment, trends of social development, as well as organisational and local economies over a long time span. Traditionally in the eyes of clients, project development will need to produce the required profit margins, with some degrees of consideration for other impacts. This is being changed as all citizens of our society are becoming more aware of concepts and challenges such as the climate change, greenhouse footprints, and social dimensions of sustainability, and will in turn demand answers to these issues in built facilities. A large number of R&D projects have focused on the technical advancement and environmental assessment of products and built facilities. It is equally important address the cost/benefit issue, as developers in the world would not want to loose money by investing in built assets. For infrastructure projects, due to its significant cost of development and lengthy delivery time, presenting the full money story of going green is of vital importance. Traditional views of life-cycle costing tend to focus on the pure economics of a construction project. Sustainability concepts are not broadly integrated with the current LCCA in the construction sector. To rectify this problem, this paper reports on the progress to date of developing and extending contemporary LCCA models in the evaluation of road infrastructure sustainability. The suggested new model development is based on sustainability indicators identified through previous research, and incorporating industry verified cost elements of sustainability measures. The on-going project aims to design and a working model for sustainability life-cycle costing analysis for this type of infrastructure projects.
Resumo:
This is a book review of Indigenous Peoples: Self-Determination Knowledge Indigeneity. Edited by Henry Minde in collaboration with Harald Gaski, Svein Jentoft and Georges Midre. Published by Eburon Academic Publishers in Delft, the Netherlands. Paperback, 382 pages, no index. AUD. $79.99. ISBN 978-90-5972-204-0.
Resumo:
Many cities worldwide face the prospect of major transformation as the world moves towards a global information order. In this new era, urban economies are being radically altered by dynamic processes of economic and spatial restructuring. The result is the creation of ‘informational cities’ or its new and more popular name, ‘knowledge cities’. For the last two centuries, social production had been primarily understood and shaped by neo-classical economic thought that recognized only three factors of production: land, labor and capital. Knowledge, education, and intellectual capacity were secondary, if not incidental, factors. Human capital was assumed to be either embedded in labor or just one of numerous categories of capital. In the last decades, it has become apparent that knowledge is sufficiently important to deserve recognition as a fourth factor of production. Knowledge and information and the social and technological settings for their production and communication are now seen as keys to development and economic prosperity. The rise of knowledge-based opportunity has, in many cases, been accompanied by a concomitant decline in traditional industrial activity. The replacement of physical commodity production by more abstract forms of production (e.g. information, ideas, and knowledge) has, however paradoxically, reinforced the importance of central places and led to the formation of knowledge cities. Knowledge is produced, marketed and exchanged mainly in cities. Therefore, knowledge cities aim to assist decision-makers in making their cities compatible with the knowledge economy and thus able to compete with other cities. Knowledge cities enable their citizens to foster knowledge creation, knowledge exchange and innovation. They also encourage the continuous creation, sharing, evaluation, renewal and update of knowledge. To compete nationally and internationally, cities need knowledge infrastructures (e.g. universities, research and development institutes); a concentration of well-educated people; technological, mainly electronic, infrastructure; and connections to the global economy (e.g. international companies and finance institutions for trade and investment). Moreover, they must possess the people and things necessary for the production of knowledge and, as importantly, function as breeding grounds for talent and innovation. The economy of a knowledge city creates high value-added products using research, technology, and brainpower. Private and the public sectors value knowledge, spend money on its discovery and dissemination and, ultimately, harness it to create goods and services. Although many cities call themselves knowledge cities, currently, only a few cities around the world (e.g., Barcelona, Delft, Dublin, Montreal, Munich, and Stockholm) have earned that label. Many other cities aspire to the status of knowledge city through urban development programs that target knowledge-based urban development. Examples include Copenhagen, Dubai, Manchester, Melbourne, Monterrey, Singapore, and Shanghai. Knowledge-Based Urban Development To date, the development of most knowledge cities has proceeded organically as a dependent and derivative effect of global market forces. Urban and regional planning has responded slowly, and sometimes not at all, to the challenges and the opportunities of the knowledge city. That is changing, however. Knowledge-based urban development potentially brings both economic prosperity and a sustainable socio-spatial order. Its goal is to produce and circulate abstract work. The globalization of the world in the last decades of the twentieth century was a dialectical process. On one hand, as the tyranny of distance was eroded, economic networks of production and consumption were constituted at a global scale. At the same time, spatial proximity remained as important as ever, if not more so, for knowledge-based urban development. Mediated by information and communication technology, personal contact, and the medium of tacit knowledge, organizational and institutional interactions are still closely associated with spatial proximity. The clustering of knowledge production is essential for fostering innovation and wealth creation. The social benefits of knowledge-based urban development extend beyond aggregate economic growth. On the one hand is the possibility of a particularly resilient form of urban development secured in a network of connections anchored at local, national, and global coordinates. On the other hand, quality of place and life, defined by the level of public service (e.g. health and education) and by the conservation and development of the cultural, aesthetic and ecological values give cities their character and attract or repel the creative class of knowledge workers, is a prerequisite for successful knowledge-based urban development. The goal is a secure economy in a human setting: in short, smart growth or sustainable urban development.
Supply chain sustainability : a relationship management approach moderated by culture and commitment
Resumo:
This research explores the nature of relationship management on construction projects in Australia and examines the effects of culture, by means of Schwarz’s value survey, on relationships under different contract strategies. The research was based on the view that the development of a sustainable supply chain depends on the transfer of knowledge and capabilities from the larger players in the supply chain through collaboration brought about by relationship management. The research adopted a triangulated approach in which quantitative data were collected by questionnaire, interviews were conducted to explore and enrich the quantitative data and case studies were undertaken in order to illustrate and validate the findings. The aim was to investigate how values and attitudes enhance or reduce the incorporation of the supply chain into the project. From the research it was found that the degree of match and mismatch between values and contract strategy impacts commitment and the engagement and empowerment of the supply chain.