993 resultados para Taquari river
Resumo:
Protection of coastal wetland environments is an important prerequisite to effective and sustainable fisheries management and conservation of habitats for the use of future generations. Mangroves, saltmarshes and seagrasses directly support local and offshore fisheries through the provision of food, shelter, breeding and nursery grounds. As such, these vegetated wetland environments along with sandbars, mudflats, rocky foreshores and reefs have significant economic value as well as their intrinsic aesthetic and ecological values. This report summarises the results of the mapping undertaken in the Gulf of Carpentaria Region from the Queensland/Northern Territory border eastwards to the western bank of the Flinders River (hereafter called the Gulf Study Area). The study was undertaken in order to: 1. document and map coastal wetlands of the Gulf Study Area; 2. document levels of existing disturbance to and protection of these wetlands; 3. examine existing recreational, indigenous and commercial fisheries of the region; 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species for future FHA/Marine Protected Area (MPA) declaration. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]
Resumo:
Digital Image
Resumo:
The fisheries resources of the Bohle River and its small catchment area adjacent Townsville, north Queensland, were investigated through available literature, scientific research surveys and analysis of commercial and recreational catch and effort data. Research surveys produced a total of 4383 fish from the waters of the Bohle River during 1997-1998. These were classified into 104 fish species from 49 families. Gillnetting, cast netting, fish trapping and crab potting techniques were used in the estuarine waters of the Bohle River with freshwater reaches in the upper catchment surveyed by electrofishing. This range of survey techniques was used to estimate the relative abundance of ten commercially and recreationally important species: Barramundi (Lates calcarifer), king threadfin (Polydactylus macrochir), blue threadfin (Eleutheronema tetradactylum), mangrove jack (Lutjanus argentimaculatus), banded and spotted grunter (Pomadasys kaakan and Pomadasys argenteus), pikey and yellowfin bream (Acanthopagrus berda and Acanthopagrus australis), tilapia (Oreochromis spp.), jungle perch (Kuhlia rupestris) and mud crab (Scylla serrata). The results of each survey method are discussed with a focus on spatial and temporal patterns in diversity and catch rate.
Resumo:
Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events.Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg haˉ¹ per event while losses of N and P ranged from 10 to 1900 g haˉ¹ and from 1 to 71 g haˉ¹ per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg lˉ¹), total N (range: 101-4000 ug lˉ¹) and total P (range: 14-609 ug lˉ¹). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent.Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg lˉ¹), total N (range: 650-6350 ug lˉ¹) and total P (range: 50-1500 ug lˉ¹) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes.These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment.
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Burdekin River irrigation area (BRIA) and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 for the Burdekin natural resource management region. The framework for the Burdekin is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the BRIA was provided by the APSIM model. The information obtained from the APSIM crop modelling programme included sugarcane yields and legume grain yield (legume grain yield only applies to A class management practice). Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the net present value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. This document focuses on the economic implications of these management practices in the Burdekin River Irrigation Area (BRIA). A review of the management practices is currently being undertaken to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics.
Resumo:
A river basin that is extensively developed in the downstream reaches and that has a high potential for development in the upper reaches is considered for irrigation planning. A four-reservoir system is modeled on a monthly basis by using a mathematical programing (LP) formulation to find optimum cropping patterns, subject to land, water, and downstream release constraints. The model is applied to a fiver basin in India. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analyzed in the context of multiobjective planning, and the tradeoffs are discussed.
Resumo:
High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (similar to 2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.
Resumo:
‘Demonstration reaches’ are sections of river where multiple threats to native fish are addressed through river rehabilitation and strong community participation. They are an important way of promoting the key driving actions of the Murray-Darling Basin Authority's Native Fish Strategy (NFS) by using on-ground community-driven rehabilitation. Measuring rehabilitation success against well-defined targets and using this information to adaptively mange activities is fundamental to the demonstration reach philosophy. Seven years on from the establishment of the first demonstration reach, there are now seven throughout the Murray-Darling Basin (MDB), all in differing states of maturation and but all applying a standardised framework for monitoring native fish outcomes. In this study, we reflect on the role that demonstration reaches have played within the NFS, synthesise some key findings from 32 monitoring and evaluation outputs, and highlight some of the successes and barriers to success. We make recommendations as to how to strengthen the demonstration reach model to ensure it remains a relevant approach for fish habitat rehabilitation beyond the NFS and MDB.
Resumo:
The Florida manatee, Trichechus manatus latirostris, is a hindgut-fermenting herbivore. In winter, manatees migrate to warm water overwintering sites where they undergo dietary shifts and may suffer from cold-induced stress. Given these seasonally induced changes in diet, the present study aimed to examine variation in the hindgut bacterial communities of wild manatees overwintering at Crystal River, west Florida. Faeces were sampled from 36 manatees of known sex and body size in early winter when manatees were newly arrived and then in mid-winter and late winter when diet had probably changed and environmental stress may have increased. Concentrations of faecal cortisol metabolite, an indicator of a stress response, were measured by enzyme immunoassay. Using 454-pyrosequencing, 2027 bacterial operational taxonomic units were identified in manatee faeces following amplicon pyrosequencing of the 16S rRNA gene V3/V4 region. Classified sequences were assigned to eight previously described bacterial phyla; only 0.36% of sequences could not be classified to phylum level. Five core phyla were identified in all samples. The majority (96.8%) of sequences were classified as Firmicutes (77.3 ± 11.1% of total sequences) or Bacteroidetes (19.5 ± 10.6%). Alpha-diversity measures trended towards higher diversity of hindgut microbiota in manatees in mid-winter compared to early and late winter. Beta-diversity measures, analysed through permanova, also indicated significant differences in bacterial communities based on the season.
Resumo:
The study deals with the irrigation planning of the Cauvery river basin in peninsular India which is extensively developed in the downstream reaches and has a high potential for development in the upper reaches. A four-reservoir system is modelled on a monthly basis by using a mathematical programming (LP) formulation to find optimum cropping patterns, subject to land, water and downstream release constraints, and applied to the Cauvery basin. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analysed in the context of multiobjective planning and the trade-offs discussed.
Resumo:
Digital image
Resumo:
Dry seeding of aman rice can facilitate timely crop establishment and early harvest and thus help to alleviate the monga (hunger) period in the High Ganges Flood Plain of Bangladesh. Dry seeding also offers many other potential benefits, including reduced cost of crop establishment and improved soil structure for crops grown in rotation with rice. However, the optimum time for seeding in areas where farmers have access to water for supplementary irrigation has not been determined. We hypothesized that earlier sowing is safer, and that increasing seed rate mitigates the adverse effects of significant rain after sowing on establishment and crop performance. To test these hypotheses, we analyzed long term rainfall data, and conducted field experiments on the effects of sowing date (target dates of 25 May, 10 June, 25 June, and 10 July) and seed rate (20, 40, and 60 kg ha−1) on crop establishment, growth, and yield of dry seeded Binadhan-7 (short duration, 110–120 d) during the 2012 and 2013 rainy seasons. Wet soil as a result of untimely rainfall usually prevented sowing on the last two target dates in both years, but not on the first two dates. Rainfall analysis also suggested a high probability of being able to dry seed in late May/early June, and a low probability of being able to dry seed in late June/early July. Delaying sowing from 25 May/10 June to late June/early July usually resulted in 20–25% lower plant density and lower uniformity of the plant stand as a result of rain shortly after sowing. Delaying sowing also reduced crop duration, and tillering or biomass production when using a low seed rate. For the late June/early July sowings, there was a strong positive relationship between plant density and yield, but this was not the case for earlier sowings. Thus, increasing seed rate compensated for the adverse effect of untimely rains after sowing on plant density and the shorter growth duration of the late sown crops. The results indicate that in this region, the optimum date for sowing dry seeded rice is late May to early June with a seed rate of 40 kg ha−1. Planting can be delayed to late June/early July with no yield loss using a seed rate of 60 kg ha−1, but in many years, the soil is simply too wet to be able to dry seed at this time due to rainfall.