924 resultados para Takagi Sugeno fuzzy systems
Resumo:
Estudi i implementació d'un sistema multiagent intel·ligent i la seva aplicació a sistemes difusos. Utilització de les llibreries JADE i JFuzzyLogic.
Resumo:
Työn tavoitteena oli tutkia älykkäiden ohjausjärjestelmien käyttöä mekatronisen koneen väsymiskeston parantamisessa. Älykkäiden järjestelmien osalta työssä keskityttiin lähinnä neuroverkkojen ja sumean logiikan mahdollisuuksien tutkimiseen. Tämän lisäksi työssä kehitettiin väsymiskestoikää lisäävä älykkäisiin järjestelmiin perustuva ohjausalgoritmi. Ohjausalgoritmi liitettiin osaksi puutavarakuormaimen ohjausta. Ohjaimen kehittely suoritettiin aluksi simulointimallien avulla. Laajemmat ohjaimen testaukset suoritettiin laboratoriossa fyysisen prototyypin avulla. Tuloksena puutavarakuormaimen puomin väsymiskestoikäennuste saatiin moninkertaistettua. Väsymiskestoiän parantumisen lisäksi ohjainalgoritmi myös vaimentaa kuormaimen värähtelyä.
Resumo:
In the present work the behavior of a model acquaintance of market is analyzed with an only one, in that is considered that the parameters that tie the variables that it incorporates the pattern come expressed through uncertain magnitudes. The objective of the study consists on the analysis of the balance from the hypotheses of established uncertainties
Resumo:
Distortion risk measures summarize the risk of a loss distribution by means of a single value. In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a single value. We show that these concepts can be derived from the Choquet integral, and then the mathematical relationship between distortion risk measures and the OWA and WOWA operators for discrete and finite random variables is presented. This connection offers a new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail Value-at-Risk can be understood from an aggregation operator perspective. The theoretical results are illustrated in an example and the degree of orness concept is discussed.
Resumo:
En el ámbito de la Economía de la Empresa tiene mucha importancia el estudio de los gastos de producción E(Q) que se originarán en el proceso y que generalmente vendrán expresados matemáticamente por una dependencia lineal o cuadrática de las unidades Q que se proponen fabricar. Supondremos, además, que esta función está afectada por dos restricciones: una es de productividad, Q1 ≤ Q2 ≤ Q3 , y otra de limitación de gastos máximos permitidos, E(Q) ≤ EM . En el presente artículo partiremos de una función cuadrática nítida, en la cual justificaremos el signo de los coeficientes que hemos empleado. Después, para adentrarnos en el campo fuzzy, la generalizaremos con otra de coeficientes borrosos. Naturalmente, la nueva función borrosa ya no se expresará a través de una única curva, sino que estará constituida por un haz infinito de curvas nítidas, cada una de ellas con un determinado grado de posibilidad. Centramos nuestra atención en las curvas que llamamos central, inferior y superior. El núcleo de nuestro análisis consistirá básicamente en reducir paulatinamente los soportes de los coeficientes hasta hallar un cierto valor k del α-corte, de manera que a partir de él todas las curvas del haz borroso tengan sentido económico y cumplan las dos restricciones impuestas. En último lugar, y a través de un caso numérico, comprobaremos las deducciones teóricas que hemos obtenido en el análisis anterior
Resumo:
Rough turning is an important form of manufacturing cylinder-symmetric parts. Thus far, increasing the level of automation in rough turning has included process monitoring methods or adaptive turning control methods that aim to keep the process conditions constant. However, in order to improve process safety, quality and efficiency, an adaptive turning control should be transformed into an intelligent machining system optimizing cutting values to match process conditions or to actively seek to improve process conditions. In this study, primary and secondary chatter and chip formation are studied to understand how to measure the effect of these phenomena to the process conditions and how to avoid undesired cutting conditions. The concept of cutting state is used to address the combination of these phenomena and the current use of the power capacity of the lathe. The measures to the phenomena are not developed based on physical measures, but instead, the severity of the measures is modelled against expert opinion. Based on the concept of cutting state, an expert system style fuzzy control system capable of optimizing the cutting process was created. Important aspects of the system include the capability to adapt to several cutting phenomena appearing at once, even if the said phenomena would potentially require conflicting control action.
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.
Resumo:
We propose a new class of neurofuzzy construction algorithms with the aim of maximizing generalization capability specifically for imbalanced data classification problems based on leave-one-out (LOO) cross validation. The algorithms are in two stages, first an initial rule base is constructed based on estimating the Gaussian mixture model with analysis of variance decomposition from input data; the second stage carries out the joint weighted least squares parameter estimation and rule selection using orthogonal forward subspace selection (OFSS)procedure. We show how different LOO based rule selection criteria can be incorporated with OFSS, and advocate either maximizing the leave-one-out area under curve of the receiver operating characteristics, or maximizing the leave-one-out Fmeasure if the data sets exhibit imbalanced class distribution. Extensive comparative simulations illustrate the effectiveness of the proposed algorithms.
Resumo:
Sistemas de previsão de cheias podem ser adequadamente utilizados quando o alcance é suficiente, em comparação com o tempo necessário para ações preventivas ou corretivas. Além disso, são fundamentalmente importantes a confiabilidade e a precisão das previsões. Previsões de níveis de inundação são sempre aproximações, e intervalos de confiança não são sempre aplicáveis, especialmente com graus de incerteza altos, o que produz intervalos de confiança muito grandes. Estes intervalos são problemáticos, em presença de níveis fluviais muito altos ou muito baixos. Neste estudo, previsões de níveis de cheia são efetuadas, tanto na forma numérica tradicional quanto na forma de categorias, para as quais utiliza-se um sistema especialista baseado em regras e inferências difusas. Metodologias e procedimentos computacionais para aprendizado, simulação e consulta são idealizados, e então desenvolvidos sob forma de um aplicativo (SELF – Sistema Especialista com uso de Lógica “Fuzzy”), com objetivo de pesquisa e operação. As comparações, com base nos aspectos de utilização para a previsão, de sistemas especialistas difusos e modelos empíricos lineares, revelam forte analogia, apesar das diferenças teóricas fundamentais existentes. As metodologias são aplicadas para previsão na bacia do rio Camaquã (15543 km2), para alcances entre 10 e 48 horas. Dificuldades práticas à aplicação são identificadas, resultando em soluções as quais constituem-se em avanços do conhecimento e da técnica. Previsões, tanto na forma numérica quanto categorizada são executadas com sucesso, com uso dos novos recursos. As avaliações e comparações das previsões são feitas utilizandose um novo grupo de estatísticas, derivadas das freqüências simultâneas de ocorrência de valores observados e preditos na mesma categoria, durante a simulação. Os efeitos da variação da densidade da rede são analisados, verificando-se que sistemas de previsão pluvio-hidrométrica em tempo atual são possíveis, mesmo com pequeno número de postos de aquisição de dados de chuva, para previsões sob forma de categorias difusas.
Resumo:
Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization
Resumo:
A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics
Resumo:
Let (X, d) be a compact metric space and f: X → X a continuous function and consider the hyperspace (K(X), H) of all nonempty compact subsets of X endowed with the Hausdorff metric induced by d. Let f̄: K(X) → K (X) be defined by f̄(A) = {f(a)/a ∈ A} the natural extension of f to K(X), then the aim of this work is to study the dynamics of f when f is turbulent (erratic, respectively) and its relationships.
Resumo:
The design of full programmable type-2 membership function circuit is presented in this paper. This circuit is used to implement the fuzzifier block of Type-2 Fuzzy Logic Controller chip. In this paper the type-2 fuzzy set was obtained by blurring the width of the type-1 fuzzy set. This circuit allows programming the height and the shape of the membership function. It operates in current mode, with supply voltage of 3.3V. The simulation results of interval type-2 membership function circuit have been done in CMOS 0.35μm technology using Mentor Graphics software. © 2011 IEEE.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS