860 resultados para Takagi–Sugeno (T–S) fuzzy systems
Resumo:
Integration of biometrics is considered as an attractive solution for the issues associated with password based human authentication as well as for secure storage and release of cryptographic keys which is one of the critical issues associated with modern cryptography. However, the widespread popularity of bio-cryptographic solutions are somewhat restricted by the fuzziness associated with biometric measurements. Therefore, error control mechanisms must be adopted to make sure that fuzziness of biometric inputs can be sufficiently countered. In this paper, we have outlined such existing techniques used in bio-cryptography while explaining how they are deployed in different types of solutions. Finally, we have elaborated on the important facts to be considered when choosing appropriate error correction mechanisms for a particular biometric based solution.
Resumo:
This chapter is focussed on the research and development of an intelligent driver warning system (IDWS) as a means to improve road safety and driving comfort. Two independent IDWS case studies are presented. The first study examines the methodology and implementation for attentive visual tracking and trajectory estimation for dynamic scene segmentation problems. In the second case study, the concept of driver modelling is evaluated which can be used to provide useful feedback to drivers. In both case studies, the quality of IDWS is largely determined by the modelling capability for estimating multiple vehicle trajectories and modelling driving behaviour. A class of modelling techniques based on neural-fuzzy systems, which exhibits provable learning and modelling capability, is proposed. For complex modelling problems where the curse of dimensionality becomes an issue, a network construction algorithm based on Adaptive Spline Modelling of Observation Data (ASMOD) is also proposed.
Resumo:
Structural Support Vector Machines (SSVMs) have become a popular tool in machine learning for predicting structured objects like parse trees, Part-of-Speech (POS) label sequences and image segments. Various efficient algorithmic techniques have been proposed for training SSVMs for large datasets. The typical SSVM formulation contains a regularizer term and a composite loss term. The loss term is usually composed of the Linear Maximum Error (LME) associated with the training examples. Other alternatives for the loss term are yet to be explored for SSVMs. We formulate a new SSVM with Linear Summed Error (LSE) loss term and propose efficient algorithms to train the new SSVM formulation using primal cutting-plane method and sequential dual coordinate descent method. Numerical experiments on benchmark datasets demonstrate that the sequential dual coordinate descent method is faster than the cutting-plane method and reaches the steady-state generalization performance faster. It is thus a useful alternative for training SSVMs when linear summed error is used.
Resumo:
The paper describes an algorithm for multi-label classification. Since a pattern can belong to more than one class, the task of classifying a test pattern is a challenging one. We propose a new algorithm to carry out multi-label classification which works for discrete data. We have implemented the algorithm and presented the results for different multi-label data sets. The results have been compared with the algorithm multi-label KNN or ML-KNN and found to give good results.
Resumo:
Esta dissertação trata de um estudo e o desenvolvimento de uma proposta de um ambiente de aprendizagem, para qualquer instituição de ensino superior, em três níveis de ensino da área de controle e automação: graduação, pós-graduação Lato Sensu e Stricto Sensu. Primeiramente, foram feitas visitas aos laboratórios em universidades e entrevistas com professores que ministram as disciplinas de controle e automação nos três níveis de aprendizagem. Foram constatadas virtudes e fragilidades metodológicas na questão da prática laboratorial em relação a aspectos industriais na área de engenharia elétrica de três instituições do Estado do Rio de Janeiro, sendo uma federal, uma estadual e outra privada. Posteriormente, foram analisados mecanismos e instrumentos necessários para interagir com modelos experimentais propostos nas entrevistas de maneira didática, para fins de constituir o ambiente de aprendizagem em automação, no qual foi eleito o LABVIEW como a interface mais favorável para aplicação de controles, mantendo uma analogia de cunho prático-industrial. A partir dessas análises foram sugeridos ainda elementos típicos de automação e três estudos de caso: um sistema térmico, um controle de velocidade de motores e um pêndulo invertido, por meio de controles simples e avançados como o controlador nebuloso, caracterizando-se pelo fortalecimento da atividade acadêmico-industrial
Resumo:
An effective face detection system used for detecting multi pose frontal face in gray images is presented. Image preprocessing approaches are applied to reduce the influence of the complex illumination. Eye-analog pairing and improved multiple related template matching are used to glancing and accurate face detecting, respectively. To shorten the time cost of detecting process, we employ prejudge rules in checking candidate image segments before template matching. Test by our own face database with complicated illumination and background, the system has high calculation speed and illumination independency, and obtains good experimental results.
Resumo:
Z. Huang and Q. Shen. Transformation Based Interpolation with Generalized Representative Values. Proceedings of the 14th International Conference on Fuzzy Systems, pages 821-826.
Resumo:
M. Galea and Q. Shen. Linguistic hedges for ant-generated rules. Proceedings of the 15th International Conference on Fuzzy Systems, pages 9105-9112, 2006.
Resumo:
T.Boongoen and Q. Shen. Semi-Supervised OWA Aggregation for Link-Based Similarity Evaluation and Alias Detection. Proceedings of the 18th International Conference on Fuzzy Systems (FUZZ-IEEE'09), pp. 288-293, 2009. Sponsorship: EPSRC
Resumo:
This paper presents a formal method for representing and recognizing scenario patterns with rich internal temporal aspects. A scenario is presented as a collection of time-independent fluents, together with the corresponding temporal knowledge that can be relative and/or with absolute values. A graphical representation for temporal scenarios is introduced which supports consistence checking as for the temporal constraints. In terms of such a graphical representation, graph-matching algorithms/methodologies can be directly adopted for recognizing scenario patterns.
Resumo:
Time-series and sequences are important patterns in data mining. Based on an ontology of time-elements, this paper presents a formal characterization of time-series and state-sequences, where a state denotes a collection of data whose validation is dependent on time. While a time-series is formalized as a vector of time-elements temporally ordered one after another, a state-sequence is denoted as a list of states correspondingly ordered by a time-series. In general, a time-series and a state-sequence can be incomplete in various ways. This leads to the distinction between complete and incomplete time-series, and between complete and incomplete state-sequences, which allows the expression of both absolute and relative temporal knowledge in data mining.
Resumo:
The purpose of this study is to develop a decision making system to evaluate the risks in E-Commerce (EC) projects. Competitive software businesses have the critical task of assessing the risk in the software system development life cycle. This can be conducted on the basis of conventional probabilities, but limited appropriate information is available and so a complete set of probabilities is not available. In such problems, where the analysis is highly subjective and related to vague, incomplete, uncertain or inexact information, the Dempster-Shafer (DS) theory of evidence offers a potential advantage. We use a direct way of reasoning in a single step (i.e., extended DS theory) to develop a decision making system to evaluate the risk in EC projects. This consists of five stages 1) establishing knowledge base and setting rule strengths, 2) collecting evidence and data, 3) determining evidence and rule strength to a mass distribution for each rule; i.e., the first half of a single step reasoning process, 4) combining prior mass and different rules; i.e., the second half of the single step reasoning process, 5) finally, evaluating the belief interval for the best support decision of EC project. We test the system by using potential risk factors associated with EC development and the results indicate that the system is promising way of assisting an EC project manager in identifying potential risk factors and the corresponding project risks.