969 resultados para TUMOR-GROWTH


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University of Aarhus, Denmark, from 2010 to 2012. Reprogramming of cellular metabolism is a key process during tumorigenesis. This metabolic adaptation is required in order to sustain the energetic and anabolic demands of highly proliferative cancer cells. Despite known for decades (Warburg effect), the precise molecular mechanisms regulating this switch remained unexplored. We have identify SIRT6 as a novel tumor suppressor that regulates aerobic glycolysis in cancer cells. Importantly, loss of this sirtuin in non-transformed cells leads to tumor formation without activation of known oncogenes, indicating that SIRT6 functions as a first-hit tumor suppressor. Furthermore, transformed SIRT6-deficient cells display increased glycolysis and tumor growth in vivo, suggesting that SIRT6 plays a role in both establishment and maintenance of cancer. We provide data demonstrating that the glycolytic switch towards aerobic glycolysis is the main driving force for tumorigenesis in SIRT6-deficient cells, since inhibition of glycolysis in these cells abrogates their tumorigenic potential. By using a conditional SIRT6-targeted allele, we show that deletion of SIRT6 in vivo increases the number, size and aggressiveness of tumors, thereby confirming a role of SIRT6 as a tumor suppressor in vivo. In addition, we describe a new role for SIRT6 as a regulator of ribosome biogenesis by co-repressing MYC transcriptional activity. Therefore, by repressing glycolysis and ribosomal gene expression, SIRT6 inhibits tumor establishment and progression. Further validating these data, SIRT6 is selectively downregulated in several human cancers, and expression levels of SIRT6 predict both prognosis and tumor-free survival rates, highlighting SIRT6 as a critical modulator of cancer metabolism. Our results provide a potential Achilles’ hill to tackle cancer metabolism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer progression is dependent, in part, on interactions between tumor cells and the host microenvironment. During pregnancy, physiological changes occur that include inflammation and reduced immunity, both of which can promote tumor growth. Accordingly, tumors are observed to be more aggressive and to have greater proclivity toward metastasis during pregnancy. In this work, myeloid-derived suppressor cells (MDSC), a population of heterogeneous and pluripotent cells that can down-regulate immune responses during pathological conditions, were studied in the context of mouse and human gestation. The gene expression profile of mouse MDSC has been shown to differ in pregnant and virgin mice, and the profile in pregnant animals bears similarity to that of MDSC associated with the tumor microenvironment. Common induced genes include Fibronectin1 and Olfactomedin4, which are known to be involved in extracellular matrix remodeling and tissue permissiveness to tumor cells implantation. Our observations suggest that mouse MDSC may represent a shared regulatory mechanism of tissue permissiveness that occurs during the physiological state of gestation and tumor growth. Pregnancy-associated changes in immunosuppressive myeloid cell activity have also been studied in humans. We show that CD33+ myeloid cells isolated from PBMC (peripheral blood mononuclear cells) of pregnant women are more strongly immunosuppressive on T cells than CD33+ cells removed from non-pregnant subjects. During murine gestation, decreased natural killer (NK) cell activity is responsible, at least in part, for the increase in experimental metastasis. However, although peripheral blood NK cell numbers and cytotoxicity were slightly reduced in pregnant women, neither appeared to be regulated by CD33+ cells. Nevertheless, based on its observed suppression of T cell responses, the CD33+ PBMC subset appears to be an appropriate myeloid cell population to study in order to elucidate mechanisms of immune regulation that occur during human pregnancy. Our findings regarding the immunosuppressive function of CD33+cells and the role of NK cells during human pregnancy are consistent with the notion that changes in the function of the immune system participate in the constitution of a permissive soil for tumour progression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe a new mechanism regulating the tumor endothelial barrier and T cell infiltration into tumors. We detected selective expression of the death mediator Fas ligand (FasL, also called CD95L) in the vasculature of human and mouse solid tumors but not in normal vasculature. In these tumors, FasL expression was associated with scarce CD8(+) infiltration and a predominance of FoxP3(+) T regulatory (Treg) cells. Tumor-derived vascular endothelial growth factor A (VEGF-A), interleukin 10 (IL-10) and prostaglandin E2 (PGE2) cooperatively induced FasL expression in endothelial cells, which acquired the ability to kill effector CD8(+) T cells but not Treg cells because of higher levels of c-FLIP expression in Treg cells. In mice, genetic or pharmacologic suppression of FasL produced a substantial increase in the influx of tumor-rejecting CD8(+) over FoxP3(+) T cells. Pharmacologic inhibition of VEGF and PGE2 produced a marked increase in the influx of tumor-rejecting CD8(+) over FoxP3(+) T cells that was dependent on attenuation of FasL expression and led to CD8-dependent tumor growth suppression. Thus, tumor paracrine mechanisms establish a tumor endothelial death barrier, which has a critical role in establishing immune tolerance and determining the fate of tumors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤ 500 ms) of radiation delivered at ultrahigh dose rate (≥ 40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤ 0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc(+) orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-β (transforming growth factor-β) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor-α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

TWEAK, a TNF family ligand with pleiotropic cellular functions, was originally described as capable of inducing tumor cell death in vitro. TWEAK functions by binding its receptor, Fn14, which is up-regulated on many human solid tumors. Herein, we show that intratumoral administration of TWEAK, delivered either by an adenoviral vector or in an immunoglobulin Fc-fusion form, results in significant inhibition of tumor growth in a breast xenograft model. To exploit the TWEAK-Fn14 pathway as a therapeutic target in oncology, we developed an anti-Fn14 agonistic antibody, BIIB036. Studies described herein show that BIIB036 binds specifically to Fn14 but not other members of the TNF receptor family, induces Fn14 signaling, and promotes tumor cell apoptosis in vitro. In vivo, BIIB036 effectively inhibits growth of tumors in multiple xenograft models, including colon (WiDr), breast (MDA-MB-231), and gastric (NCI-N87) tumors, regardless of tumor cell growth inhibition response observed to BIIB036 in vitro. The anti-tumor activity in these cell lines is not TNF-dependent. Increasing the antigen-binding valency of BIB036 significantly enhances its anti-tumor effect, suggesting the contribution of higher order cross-linking of the Fn14 receptor. Full Fc effector function is required for maximal activity of BIIB036 in vivo, likely due to the cross-linking effect and/or ADCC mediated tumor killing activity. Taken together, the anti-tumor properties of BIIB036 validate Fn14 as a promising target in oncology and demonstrate its potential therapeutic utility in multiple solid tumor indications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Radiotherapy is successfully used to treat cancer. Emerging evidence, however, indicates that recurrences after radiotherapy are associated with increased local invasion, metastatic spreading and poor prognosis. Radiation-induced modifications of the tumor microenvironment have been proposed to contribute to increased aggressive tumor behavior, an effect also referred to as tumor bed effect, but the putative mechanisms involved have remained largely elusive. We have recently demonstrated that irradiation of the prospective tumor stroma impairs de novo angiogenesis through sustained inhibition of proliferation, migration and sprouting of endothelial cells. Experimental tumors growing within a pre-irradiated field have reduced tumor angiogenesis and tumor growth, increased hypoxia, necrosis, local invasion and distant metastasis. Mechanisms of progression involve adaptation of tumor cells to local hypoxic conditions as well as selection of cells with invasive and metastatic capacities. The matricellular protein CYR61 and integrin αVβ5 emerged as molecules that cooperate to mediate lung metastasis. Cilengitide, a small molecular inhibitor of αV integrins prevented lung metastasis formation. These results represent a conceptual advance to the understanding of the tumor bed effect and indicate that αV integrin inhibition might be a potential therapeutic approach for preventing metastasis in patients at risk for post-radiation recurrences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Metastasis depends on the ability of tumor cells to establish a relationship with the newly seeded tissue that is conducive to their survival and proliferation. However, the factors that render tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. Here we have shown that during murine gestation, metastasis is enhanced regardless of tumor type, and that decreased NK cell activity is responsible for the observed increase in experimental metastasis. Gene expression changes in pregnant mouse lung and liver were shown to be similar to those detected in premetastatic sites and indicative of myeloid cell infiltration. Indeed, myeloid-derived suppressor cells (MDSCs) accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, providing a candidate mechanism for the enhanced metastatic tumor growth observed in gestant mice. Although the functions of MDSCs are not yet understood in the context of pregnancy, our observations suggest that they may represent a shared mechanism of immune suppression occurring during gestation and tumor growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract: Blocking tumor growth by targeting the tumor vasculature is a promising approach in cancer therapy. Both, disrupting tumor vessels as well as normalization of tumor vessel abnormalities have shown anti-cancer efficacy. A plethora of agents that act on the tumor vasculature have been developed; however, so far few have shown clinical benefits. Among the successful agents, inhibitors of the mammalian target of rapamycin (mTOR) are able to reduce tumor growth by targeting tumor vessels. mTOR inhibition exerts at least three different effects on the tumor vasculature. First, it reduces tumor angiogenesis. Second it normalizes the tumor vasculature and third, it promotes the formation of thrombosis in tumor vessels. The characterization of the molecular functions regulated by mTOR and of relevance to the tumor vasculature is therefore important in order to further identify biological mechanisms involved in the tumor vascular network as well as to improve the efficacy of these inhibitors. Here, we will first enumerate the evidences for the anti-angiogenic activities of mTOR inhibitors and describe the molecular mechanisms involved. We will further analyze the effects of mTOR inhibition on vascular normalization and also describe how mTOR inhibition promotes thrombosis formation specifically in tumor vessels. Finally, we will describe a new generation of mTOR inhibitors and examine their effects on the tumor vasculature

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The notion that tumor angiogenesis may have therapeutic implications in the control of tumor growth was introduced by Dr. Judah Folkman in 1971. The approval of Avastin in 2004 as the first antiangiogenic systemic drug to treat cancer patients came as a validation of this visionary concept and opened new perspectives to the treatment of cancer. In addition, this success boosted the field to the quest for new therapeutic targets and antiangiogenic drugs. Preclinical and clinical evidence indicate that vascular integrins may be valid therapeutic targets. In preclinical studies, pharmacological inhibition of integrin function efficiently suppressed angiogenesis and inhibited tumor progression. alphaVbeta3 and alphaVbeta5 were the first vascular integrins targeted to suppress tumor angiogenesis. Subsequent experiments revealed that at least four additional integrins (i.e., alpha1beta1, alpha2beta1, alpha5beta1, and alpha6beta4) might be potential therapeutic targets. In clinical studies low-molecular-weight integrin inhibitors and anti-integrin function-blocking antibodies demonstrated low toxicity and good tolerability and are now being tested in combination with radiotherapy and chemotherapy for anticancer activity in patients. In this article the authors review the role of integrins in angiogenesis, present recent development in the use of alphaVbeta3 and alpha5beta1 integrin antagonists as potential therapeutics in cancer, and discuss future perspectives.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growth rate of acoustic tumors, although slow, varies widely. There may be a continuous spectrum or distinct groups of tumor growth rates. Clinical, audiologic, and conventional histologic tests have failed to shed any light on this problem. Modern immunohistochemical methods may stand a better chance. The Ki-67 monoclonal antibody stains proliferating cells and is used in this study to investigate the growth fraction of 13 skull base schwannomas. The acoustic tumors can be divided into two different growth groups, one with a rate five times the other. The literature is reviewed to see if this differentiation is borne out by the radiologic studies. Distinct growth rates have been reported: one very slow, taking 50 years to reach 1 cm in diameter, a second rate with a diameter increase of 0.2 cm/year, and a third rate five times the second, with a 1.0 cm increase in diameter per year. A fourth group growing at 2.5 cm/year is postulated, but these tumors cannot be followed for long radiologically, since symptoms demand surgical intervention. The clinical implications of these separate growth rates are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transfer of tumor antigen-specific T-cell receptors (TCRs) into human T cells aims at redirecting their cytotoxicity toward tumors. Efficacy and safety may be affected by pairing of natural and introduced TCRalpha/beta chains potentially leading to autoimmunity. We hypothesized that a novel single-chain (sc)TCR framework relying on the coexpression of the TCRalpha constant alpha (Calpha) domain would prevent undesired pairing while preserving structural and functional similarity to a fully assembled double-chain (dc)TCR/CD3 complex. We confirmed this hypothesis for a murine p53-specific scTCR. Substantial effector function was observed only in the presence of a murine Calpha domain preceded by a TCRalpha signal peptide for shuttling to the cell membrane. The generalization to a human gp100-specific TCR required the murinization of both C domains. Structural and functional T-cell avidities of an accessory disulfide-linked scTCR gp100/Calpha were higher than those of a dcTCR. Antigen-dependent phosphorylation of the proximal effector zeta-chain-associated protein kinase 70 at tyrosine 319 was not impaired, reflecting its molecular integrity in signaling. In melanoma-engrafted nonobese diabetic/severe combined immunodeficient mice, adoptive transfer of scTCR gp100/Calpha transduced T cells conferred superior delay in tumor growth among primary and long-term secondary tumor challenges. We conclude that the novel scTCR constitutes a reliable means to immunotherapeutically target hematologic malignancies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tumor-host interaction is a key determinant during cancer progression, from primary tumor growth to metastatic dissemination. At each step, tumor cells have to adapt to and subvert different types of microenvironment, leading to major phenotypic and genotypic alterations that affect both tumor and surrounding stromal compartments. Understanding the molecular mechanisms that govern tumor-host interplay may be essential for better comprehension of tumorigenesis in an effort to improve current anti-cancer therapies. The present work is composed of two projects that address tumor-host interactions from two different perspectives, the first focusing on the characterization of tumor-associated stroma and the second on membrane trafficking in tumor cells. Part 1. To selectively address stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to analyze the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Comparison showed that invasive breast and prostate cancer elicit distinct, tumor-specific stromal responses, with a limited panel of shared induced and/or repressed genes. Both breast and prostate tumor-specific deregulated stromal gene sets displayed statistically significant survival-predictive ability for their respective tumor type. By contrast, a stromal gene signature common to both tumor types did not display prognostic value, although expression of two individual genes within this common signature was found to be associated with patient survival. Part 2. GLG1 is known as an E-selectin ligand and an intracellular FGF receptor, depending on cell type and context. Immunohistochemical and immunofluorescence analyses showed that GLG1 is primarily localized in the Golgi of human tumor cells, a central location in the biosynthetic/secretory pathways. GLG1 has been shown to interact with and to recruit the ARF GEF BIGI to the Golgi membrane. Depletion of GLG1 or BIGI markedly reduced ARF3 membrane localization and activation, and altered the Golgi structure. Interestingly, these perturbations did not impair constitutive secretion in general, but rather seemed to impair secretion of a specific subset of proteins that includes MMP-9. Thus, GLG1 coordinates ARF3 activation by recruiting BIGI to the Golgi membrane, thereby affecting secretion of specific molecules. - Les interactions tumeur-hôte constituent un élément essentiel à la progression tumorale, de la croissance de la tumeur primaire à la dissémination des métastases. A chaque étape, les cellules tumorales doivent s'adapter à différents types de microenvironnement et les détourner à leur propre avantage, donnant lieu à des altérations phénotypiques et génotypiques majeures qui affectent aussi bien la tumeur elle-même que le compartiment stromal environnant. L'étude des mécanismes moléculaires qui régissent les interactions tumeur-hôte constitue une étape essentielle pour une meilleure compréhension du processus de tumorigenèse dans le but d'améliorer les thérapies anti cancer existantes. Le travail présenté ici est composé de deux projets qui abordent la problématique des interactions tumeur-hôte selon différentes perspectives, le premier se concentrant sur la caractérisation du stroma tumoral et le second sur le trafic intracellulaire des cellules tumorales. Partie 1. Pour examiner les changements d'expression des gènes dans le stroma en réponse à la progression du cancer, des puces à ADN Affymetrix ont été utilisées afin d'analyser les transcriptomes des cellules stromales issues de carcinomes invasifs du sein et de la prostate et collectées par microdissection au laser. L'analyse comparative a montré que les cancers invasifs du sein et de la prostate provoquent des réponses stromales spécifiques à chaque type de tumeur, et présentent peu de gènes induits ou réprimés de façon similaire. L'ensemble des gènes dérégulés dans le stroma associé au cancer du sein, ou à celui de la prostate, présente une valeur pronostique pour les patients atteints d'un cancer du sein, respectivement de la prostate. En revanche, la signature stromale commune aux deux types de cancer n'a aucune valeur prédictive, malgré le fait que l'expression de deux gènes présents dans cette liste soit liée à la survie des patients. Partie 2. GLG1 est connu comme un ligand des sélectines E ainsi que comme récepteur intracellulaire pour des facteurs de croissances FGFs selon le type de cellule dans lequel il est exprimé. Des analyses immunohistochimiques et d'immunofluorescence ont montré que dans les cellules tumorales, GLG1 est principalement localisé au niveau de l'appareil de Golgi, une place centrale dans la voie biosynthétique et sécrétoire. Nous avons montré que GLG1 interagit avec la protéine BIGI et participe à son recrutement à la membrane du Golgi. L'absence de GLG1 ou de BIGI réduit drastiquement le pool d'ARF3 associé aux membranes ainsi que la quantité d'ARF3 activés, et modifie la structure de l'appareil de Golgi. Il est particulièrement intéressant de constater que ces perturbations n'ont pas d'effet sur la sécrétion constitutive en général, mais semblent plutôt affecter la sécrétion spécifique d'un sous-groupe défini de protéines comprenant MMP-9. GLG1 coordonne donc l'activation de ARF3 en recrutant BIGI à la membrane du Golgi, agissant par ce moyen sur la sécrétion de molécules spécifiques.