523 resultados para TROUT SALMO-TRUTTA
Resumo:
Volatile and nonvolatile compounds, which could contribute to flavor, were analyzed in salmon. One hundred twenty-three volatile compounds were identified in the headspace of two different samples of cooked salmon, including lipid-derived volatiles, Maillard-derived volatiles, sulfur volatiles, Strecker aldehydes, nitrogen heterocyclic compounds, terpenes, and trimethylamine. Significant differences between samples were found for 104 of the volatiles. Although the levels of free cysteine and methionine were low in the salmon, sulfur volatiles were formed in the cooked fish, demonstrating that there were sufficient sulfur amino acids present for their formation. Notable differences in sulfur compounds between the samples suggested that small changes in sulfur amino acids could be responsible. When this hypothesis was tested, salmon heated with cysteine had increased levels of many thiophenes, thiazoles, alicyclic sulfides, and nitrogen heterocycles. With the addition of methionine, levels of dimethyl sulfides, two alicyclic sulfides, pyrazines, some unsaturated aldehydes, and alcohols and 2-furanmethanethiol increased. The largest difference found among the nonvolatile (low molecular weight water-soluble) compounds was in inosine monophosphate.
Resumo:
Gills are the first site of impact by metal ions in contaminated waters. Work on whole gill cells and metal uptake has not been reported before in crustaceans. In this study, gill filaments of the American lobster, Homarus americanus, were dissociated in physiological saline and separated into several cell types on a 30, 40, 50, and 80% sucrose gradient. Cells from each sucrose solution were separately resuspended in physiological saline and incubated in (65)Zn(2+) in order to assess the nature of metal uptake by each cell type. Characteristics of zinc accumulation by each kind of cell were investigated in the presence and absence of 10 mM calcium, variable NaCl concentrations and pH values, and 100 mu M verapamil, nifedipine, and the calcium ionophore A23187. (65)Zn(2+) influxes were hyperbolic functions of zinc concentration (1-1,000 mu M) and followed Michaelis-Menten kinetics. Calcium reduced both apparent zinc binding affinity (K (m)) and maximal transport velocity (J (max)) for 30% sucrose cells, but doubled the apparent maximal transport velocity for 80% sucrose cells. Results suggest that calcium, sodium, and protons enter gill epithelial cells by an endogenous broad-specificity cation channel and trans-stimulate metal uptake by a plasma membrane carrier system. Differences in zinc transport observed between gill epithelial cell types appear related to apparent affinity differences of the transporters in each kind of cell. Low affinity cells from 30% sucrose were inhibited by calcium, while high affinity cells from 80% sucrose were stimulated. (65)Zn(2+) transport was also studied by isolated, intact, gill filament tips. These intact gill fragments generally displayed the same transport properties as did cells from 80% sucrose and provided support for metal uptake processes being an apical phenomenon. A working model for zinc transport by lobster gill cells is presented.
Resumo:
Fatty acid (FA) composition of nine organs from two closely related Antarctic fish species, Notothenia codiceps and Notothenia rossii, was determined through gas chromatography with flame ionization detection. A data set for each species was obtained using major FA profiles from specimens caught in the sea waters of Admiralty Bay during the summer season. The FA profiles for both species are overall similar, but organ peculiarities have been found, which could reflect metabolic specificities and feeding habits between species. With the exception of liver, the most abundant FA in organs was the n-3 polyunsaturated FA. The total n-6 polyunsaturated FAs were minor components in all evaluated organs. Palmitic acid was identified as the major saturated FA, whereas oleic acid was the most represented of the monounsaturated FA in almost all assessed organs of both species. The n-3/n-6 ratios of all organs were higher than 3.5. Differences in individual FA and FA metabolic profiles of some organs observed between N. coriiceps and N. rossii suggest specific requirements in the mobilization, transport, incorporation, and/or catabolism of lipids that were reinforced by differences on some FA ratios expressing the activity coefficient of enzymes implicated on the FA pathway flux. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Copper sulfate is widely used in aquaculture. Exposure to this compound can be harmful to fish, resulting in oxidative metabolism alterations and gill tissue damage. Pacu, Piaractus mesopotamicus, (wt = 43.4 +/- A 3.35 g) were distributed in experimental tanks (n = 10; 180 l) and exposed for 48 h to control (without copper addition), 0.4Cu (0.4 mg l(-1)), 0CupH (without copper addition, pH = 5.0) and 0.4CupH (0.4 mg l(-1), pH = 5.0). In liver and red muscle, the superoxide dismutase (SOD) was responsive to the increases in the aquatic copper. The plasmatic intermediary metabolites and hematological variables in the fish of group 0.4Cu were similar to those of the control group. Conversely, the exposure to 0.4CupH caused an increase in the plasmatic lactate, number of red blood cells (RBC) and hemoglobin (Hb). Plasmatic copper concentration [Cu(p)] increased in group 0.4Cu and 0.4CupH, which is higher in group 0.4CupH, suggests an effect of water pH on the absorbed copper. Exposure to 0.4Cu and 0.4CupH resulted in a reduction in the Na(+)/K(+)-ATPase activity and an increase in metallothionein (MT) in the gills. Exposure to 0CupH caused a decrease in glucose and pyruvate concentrations and an increase in RBC, Hb, and the branchial Na(+)/K(+)-ATPase activity. These responses suggest that the fish triggered mechanisms to revert the blood acidosis, save energy and increase the oxygen uptake. MT was an effective biomarker, responding to copper in different pHs and dissolved oxygen. Combined-factors caused more significant disturbance in the biomarkers than single-factors.
Resumo:
BACKGROUND: Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. RESULTS: Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. CONCLUSIONS: Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro-environmental changes (diet, climatic region, etc.) may make genetic heterogeneity of variance a less stable trait over time and space.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1006/thumbnail.jpg
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Following previously published observations that a conditioned response (CR) was lost more quickly by rainbow trout (Oncorhynchus mykiss) exhibiting a high responsiveness to stressors than by low responding individuals this study was designed to investigate the effects of exogenous cortisol on the retention of a CR in unselected rainbow trout. Fish held in isolation were conditioned over a 10-day period by pairing an innocuous signal (conditioned stimulus, CS: a water jet played on the surface of the tank water) with a mild stressor (unconditioned stimulus, US: 30 min of confinement). This resulted in a brief elevation of plasma cortisol levels (the CR) when the fish was exposed to the CS only. The effect of exogenous cortisol on the retention of the CR was evaluated by comparing the performance of fish that received cortisol-containing slow-release intraperitoneal implants, with fish receiving vehicle-only implants. Retention of the CR was assessed at intervals up to 35 days after conditioning ceased. The CR was considered to be evident when 30 min following presentation of the CS, mean plasma cortisol levels were significantly higher in conditioned than untrained fish. on day 1 both cortisol-implanted and vehicle-implanted conditioned fish exhibited a CR. However, from day 5 onwards the CR was observed only in the vehicle-implanted and conditioned group. This finding indicates that administration of cortisol accelerated the extinction of the CR in the cortisol-implanted fish, suggesting that elevated plasma cortisol levels can impair memory processes in rainbow trout. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of chronic social stress on growth, energetic substrates and hormones was tested in rainbow trout, Oncorhynchus mykiss. After a 14-day isolation period, the fish were paired for 8 days. In order to expose fish to chronic intermittent social contact during pairing, they were maintained in direct contact with each other during the first day. After that, a black plastic screen partition was introduced in each tank, preventing direct contact between animals. Every day the partition was removed for 30 min, allowing physical interaction between fish. At the end of pairing period, they were isolated again for 13 days. Fish were weighed and blood was sampled frequently during the experiment. Plasma levels of cortisol, growth hormone, glucose, total protein and free amino acids were quantified. Both dominants and subordinates had specific growth rate decreased during the pairing period, but only subordinates increased when the stressor was abolished (dominants: 0.32 +/- 0.21 and 0.24 +/- 0.41, subordinates: -0.77 +/- 0.29 and 0.37 +/- 0.31, respectively). Dominants showed a higher cortisol level one week after pairing condition had been abolished than subordinates (dominants: 56.76 +/- 13.26, subordinates: 31.89 +/- 13.36). We conclude that chronic condition of intermittent social stress represents a stressful condition for animals of both hierarchical ranks and a treatment of one daily short direct contact between conspecifics does not promote habituation in fish, as mentioned for other stressors. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Silver nitrate staining of rainbow trouts (Oncorhynchus mykiss) chromosomes, for the identification of the nucleolar organizing regions (NORs), revealed that in individuals from Nucleo Experimental de Salmonicultura de Campos do Jordao (Brazil) NORs were located in the long arms of a submetacentric pair while in specimens from Mount Shasta (USA) NORs were located in the short arms of a submetacentric pair. Cytogenetic analysis of the offspring, obtained through artificial crosses including individuals from both stocks, allowed the identification of NORs in two submetacentric chromosomes, one in the short arms and the other in the long arms, confirming the effectiveness of the hybridization process. Complementary results obtained using the FISH technique with 18S and 5S rDNA probes showed that NOR-bearing chromosomes exhibited a cluster of 5S genes located in tandem with the 18S gene cluster in both stocks. The results allow us to suggest that the difference in NOR-bearing chromosomes found between the two stocks is likely to be due to a pericentric inversion involving the chromosome segment where 18S and 5S rDNA genes are located. The presence of ribosomal genes in the long arms of a submetacentric chromosome is apparently a particular characteristic of the rainbow trout stock of Campos do Jordao and might be used as a chromosome marker in studies of controlled crosses in this species.
Resumo:
This study presents data on myosin Va localization in the central nervous system of rainbow trout. We demonstrate, via immunoblots and immunocytochemistry, the expression of myosin Va in several neuronal populations of forebrain, midbrain, hindbrain and spinal cord. The neuronal populations that express myosin Va in trout constitute a very diverse group that do not seem to have many specific similarities such as neurotransmitters used, cellular size or length of their processes. The intensity of the immunoreactivity and the number of immunoreactive cells differ from region to region. Although there is a broad distribution of myosin Va, it is not present in all neuronal populations. This result is in agreement with a previous report, which indicated that myosin Va is approximately as abundant as conventional myosin II and kinesin, and it is broadly involved in neuronal motility events such as axoplasmatic transport. Furthermore, this distribution pattern is in accordance with what was shown in rats and mice; it indicates phylogenetic maintenance of the myosin Va main functions.
Resumo:
Partial cDNA sequences of myosin V from rainbow trout Oncorhynchus mykiss were analyzed and showed high similarity to MVa from other vertebrates. Phylogenetic analysis has shown that events resulting in the formation of paralogous copies of myosin Va, Vb, and Vc occurred before the divergence of vertebrates into different classes. Expression analysis of myosin Va, Vb, and Vc in different O. mykiss tissues revealed MVa exclusively expressed in hypophysis and brain whereas Vb and Vc were expressed in practically all tissues analyzed. The nucleotide sequence for myosin V was explored in a fish species for the first time and these results represent an important start in understanding the organization, evolution, and expression of myosins in early vertebrates. The data presented here represent contributions to the knowledge of rainbow trout genome. A better understanding of this economically important species could assist in development of improved strains of this fish for aquaculture.