997 resultados para TROPICAL BAY
Resumo:
Jack's Bay (the architecturalisation of memory) is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The work depicts octogenarian Jack Morris, who for forty years held the professional salmon fishing license in the hamlet of Bremer Bay, on the SE coast of Western Australia. The pinhole camera-room is sited within sand dunes new Jack's now demolished beachside camp. Three generations of Jack's descendents stand outside the room - from his daughter to his great grand children. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the sand dune upon which the floorless room is erected, along with Jack who is sitting inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. In this way it is through the agency of light that we construct our connectivity to landscape.
Resumo:
Jack's Bay expands understandings of the role of photographic media in the representation of landscapes. It does so by combining architectural construction with B&W photographic processing techniques. A purpose-built room-sized camera obscura is first constructed over a portion of the landscape to be recorded. Photosensitive paper is applied to the interior wall surfaces and is exposed to the inverted light entering a small aperture. These photographs are subsequently developed within the camera itself and consequently 'suffer' embellishments and aberrations from the makeshift darkroom conditions. In this way the specificity of both the landscape and the event of its recording are registered in the final image. Many images were destroyed in the process. The idea of the work is to help the viewer reflect on the role media plays in our understanding of landscape and to thus question the means by which they themselves record and interpret landscape representations.
Resumo:
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.
Resumo:
The Subtropical Design Handbook for Planners is primarily intended to provide advice in developing planning schemes to achieve the South East Queensland Regional Plan’s vision. This calls for ‘development which is sustainable and well-designed, and where the subtropical character of the region is recognised and reinforced’.
Resumo:
Daylighting in tropical and sub-tropical climates presents a unique challenge that is generally not well understood by designers. In a sub-tropical region such as Brisbane, Australia the majority of the year comprises of sunny clear skies with few overcast days and as a consequence windows can easily become sources of overheating and glare. The main strategy in dealing with this issue is extensive shading on windows. However, this in turn prevents daylight penetration into buildings often causing an interior to appear gloomy and dark even though there is more than sufficient daylight available. As a result electric lighting is the main source of light, even during the day. Innovative daylight devices which redirect light from windows offer a potential solution to this issue. These devices can potentially improve daylighting in buildings by increasing the illumination within the environment decreasing the high contrast between the window and work regions and deflecting potentially glare causing sunlight away from the observer. However, the performance of such innovative daylighting devices are generally quantified under overcast skies (i.e. daylight factors) or skies without sun, which are typical of European climates and are misleading when considering these devices for tropical or sub-tropical climates. This study sought to compare four innovative window daylighting devices in RADIANCE; light shelves, laser cut panels, micro-light guides and light redirecting blinds. These devices were simulated in RADIANCE under sub-tropical skies (for Brisbane) within the test case of a typical CBD office space. For each device the quantity of light redirected and its distribution within the space was used as the basis for comparison. In addition, glare analysis on each device was conducted using Weinold and Christoffersons evalglare. The analysis was conducted for selected hours for a day in each season. The majority of buildings that humans will occupy in their lifetime are already constructed, and extensive remodelling of most of these buildings is unlikely. Therefore the most effective way to improve daylighting in the near future will be through the alteration existing window spaces. Thus it will be important to understand the performance of daylighting systems with respect to the climate it is to be used in. This type of analysis is important to determine the applicability of a daylighting strategy so that designers can achieve energy efficiency as well the health benefits of natural daylight.
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.