937 resultados para TRANSFORMER NONLINEAR MODEL


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doctorat réalisé en cotutelle entre l'Université de Montréal et l'Université Paul Sabatier-Toulouse III

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation is made of the impact of a full linearized physical (moist) parameterization package on extratropical singular vectors (SVs) using the ECMWF integrated forecasting system (IFS). Comparison is made for one particular period with a dry physical package including only vertical diffusion and surface drag. The crucial extra ingredient in the full package is found to be the large-scale latent heat release. Consistent with basic theory, its inclusion results in a shift to smaller horizontal scales and enhanced growth for the SVs. Whereas, for the dry SVs, T42 resolution is sufficient, the moist SVs require T63 to resolve their structure and growth. A 24-h optimization time appears to be appropriate for the moist SVs because of the larger growth of moist SVs compared with dry SVs. Like dry SVs, moist SVs tend to occur in regions of high baroclinicity, but their location is also influenced by the availability of moisture. The most rapidly growing SVs appear to enhance or reduce large-scale rain in regions ahead of major cold fronts. The enhancement occurs in and ahead of a cyclonic perturbation and the reduction in and ahead of an anticyclonic perturbation. Most of the moist SVs for this situation are slightly modified versions of the dry SVs. However, some occur in new locations and have particularly confined structures. The most rapidly growing SV is shown to exhibit quite linear behavior in the nonlinear model as it grows from 0.5 to 12 hPa in 1 day. For 5 times this amplitude the structure is similar but the growth is about half as the perturbation damps a potential vorticity (PV) trough or produces a cutoff, depending on its sign.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness, including three algorithms using combined A- or D-optimality or PRESS statistic (Predicted REsidual Sum of Squares) with regularised orthogonal least squares algorithm respectively. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalisation scheme in orthogonal least squares or regularised orthogonal least squares has been extended such that the new algorithms are computationally efficient. A numerical example is included to demonstrate effectiveness of the algorithms. Copyright (C) 2003 IFAC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given a nonlinear model, a probabilistic forecast may be obtained by Monte Carlo simulations. At a given forecast horizon, Monte Carlo simulations yield sets of discrete forecasts, which can be converted to density forecasts. The resulting density forecasts will inevitably be downgraded by model mis-specification. In order to enhance the quality of the density forecasts, one can mix them with the unconditional density. This paper examines the value of combining conditional density forecasts with the unconditional density. The findings have positive implications for issuing early warnings in different disciplines including economics and meteorology, but UK inflation forecasts are considered as an example.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new incremental four-dimensional variational (4D-Var) data assimilation algorithm is introduced. The algorithm does not require the computationally expensive integrations with the nonlinear model in the outer loops. Nonlinearity is accounted for by modifying the linearization trajectory of the observation operator based on integrations with the tangent linear (TL) model. This allows us to update the linearization trajectory of the observation operator in the inner loops at negligible computational cost. As a result the distinction between inner and outer loops is no longer necessary. The key idea on which the proposed 4D-Var method is based is that by using Gaussian quadrature it is possible to get an exact correspondence between the nonlinear time evolution of perturbations and the time evolution in the TL model. It is shown that J-point Gaussian quadrature can be used to derive the exact adjoint-based observation impact equations and furthermore that it is straightforward to account for the effect of multiple outer loops in these equations if the proposed 4D-Var method is used. The method is illustrated using a three-level quasi-geostrophic model and the Lorenz (1996) model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine differential equations where nonlinearity is a result of the advection part of the total derivative or the use of quadratic algebraic constraints between state variables (such as the ideal gas law). We show that these types of nonlinearity can be accounted for in the tangent linear model by a suitable choice of the linearization trajectory. Using this optimal linearization trajectory, we show that the tangent linear model can be used to reproduce the exact nonlinear error growth of perturbations for more than 200 days in a quasi-geostrophic model and more than (the equivalent of) 150 days in the Lorenz 96 model. We introduce an iterative method, purely based on tangent linear integrations, that converges to this optimal linearization trajectory. The main conclusion from this article is that this iterative method can be used to account for nonlinearity in estimation problems without using the nonlinear model. We demonstrate this by performing forecast sensitivity experiments in the Lorenz 96 model and show that we are able to estimate analysis increments that improve the two-day forecast using only four backward integrations with the tangent linear model. Copyright © 2011 Royal Meteorological Society

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of spurious excitation of gravity waves in the context of four-dimensional data assimilation is investigated using a simple model of balanced dynamics. The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode, and can be initialized such that the model evolves on a so-called slow manifold, where the fast motion is suppressed. Identical twin assimilation experiments are performed, comparing the extended and ensemble Kalman filters (EKF and EnKF, respectively). The EKF uses a tangent linear model (TLM) to estimate the evolution of forecast error statistics in time, whereas the EnKF uses the statistics of an ensemble of nonlinear model integrations. Specifically, the case is examined where the true state is balanced, but observation errors project onto all degrees of freedom, including the fast modes. It is shown that the EKF and EnKF will assimilate observations in a balanced way only if certain assumptions hold, and that, outside of ideal cases (i.e., with very frequent observations), dynamical balance can easily be lost in the assimilation. For the EKF, the repeated adjustment of the covariances by the assimilation of observations can easily unbalance the TLM, and destroy the assumptions on which balanced assimilation rests. It is shown that an important factor is the choice of initial forecast error covariance matrix. A balance-constrained EKF is described and compared to the standard EKF, and shown to offer significant improvement for observation frequencies where balance in the standard EKF is lost. The EnKF is advantageous in that balance in the error covariances relies only on a balanced forecast ensemble, and that the analysis step is an ensemble-mean operation. Numerical experiments show that the EnKF may be preferable to the EKF in terms of balance, though its validity is limited by ensemble size. It is also found that overobserving can lead to a more unbalanced forecast ensemble and thus to an unbalanced analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A truly variance-minimizing filter is introduced and its per for mance is demonstrated with the Korteweg– DeV ries (KdV) equation and with a multilayer quasigeostrophic model of the ocean area around South Africa. It is recalled that Kalman-like filters are not variance minimizing for nonlinear model dynamics and that four - dimensional variational data assimilation (4DV AR)-like methods relying on per fect model dynamics have dif- ficulty with providing error estimates. The new method does not have these drawbacks. In fact, it combines advantages from both methods in that it does provide error estimates while automatically having balanced states after analysis, without extra computations. It is based on ensemble or Monte Carlo integrations to simulate the probability density of the model evolution. When obser vations are available, the so-called importance resampling algorithm is applied. From Bayes’ s theorem it follows that each ensemble member receives a new weight dependent on its ‘ ‘distance’ ’ t o the obser vations. Because the weights are strongly var ying, a resampling of the ensemble is necessar y. This resampling is done such that members with high weights are duplicated according to their weights, while low-weight members are largely ignored. In passing, it is noted that data assimilation is not an inverse problem by nature, although it can be for mulated that way . Also, it is shown that the posterior variance can be larger than the prior if the usual Gaussian framework is set aside. However , i n the examples presented here, the entropy of the probability densities is decreasing. The application to the ocean area around South Africa, gover ned by strongly nonlinear dynamics, shows that the method is working satisfactorily . The strong and weak points of the method are discussed and possible improvements are proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mixed integer continuous nonlinear model and a solution method for the problem of orthogonally packing identical rectangles within an arbitrary convex region are introduced in the present work. The convex region is assumed to be made of an isotropic material in such a way that arbitrary rotations of the items, preserving the orthogonality constraint, are allowed. The solution method is based on a combination of branch and bound and active-set strategies for bound-constrained minimization of smooth functions. Numerical results show the reliability of the presented approach. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O trabalho tem como objetivo aplicar uma modelagem não linear ao Produto Interno Bruto brasileiro. Para tanto foi testada a existência de não linearidade do processo gerador dos dados com a metodologia sugerida por Castle e Henry (2010). O teste consiste em verificar a persistência dos regressores não lineares no modelo linear irrestrito. A seguir a série é modelada a partir do modelo autoregressivo com limiar utilizando a abordagem geral para específico na seleção do modelo. O algoritmo Autometrics é utilizado para escolha do modelo não linear. Os resultados encontrados indicam que o Produto Interno Bruto do Brasil é melhor explicado por um modelo não linear com três mudanças de regime, que ocorrem no inicio dos anos 90, que, de fato, foi um período bastante volátil. Através da modelagem não linear existe o potencial para datação de ciclos, no entanto os resultados encontrados não foram suficientes para tal análise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a structuralist model of the Philips curve and applies it to the US and Brazilian economies. The theoretical model starts from a simple markup rule to build a Philips curve based on the assumptions that firms have a desired rate of profit and wokers have a target real wage. Inflation expectations are modeled in terms of current inflation and the governments’ target, and the model shows that relative prices can have both a short-run and long-run influence on inflation. When applied to the US, the structuralist Philips curve results in a nonlinear model in which there are two steady states for inflation, and where the wageshare of income becomes the main instrument to drive inflation to the governments’ target. When applied to Brazil, the structuralist Philips curve reveals a nonlinear relationship between long-run inflation and the real exchange rate, so that the same inflation target can be consistent with more than one value of the exchange rate. The main conclusion of the paper is that a structuralist specification of the Philips curve is a useful instrument to model many macroeconomic topics as well as alternative theoretical closures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)