927 resultados para TRAINING SET


Relevância:

60.00% 60.00%

Publicador:

Resumo:

SCOPE: A high intake of n-3 PUFA provides health benefits via changes in the n-6/n-3 ratio in blood. In addition to such dietary PUFAs, variants in the fatty acid desaturase 1 (FADS1) gene are also associated with altered PUFA profiles. METHODS AND RESULTS: We used mathematical modelling to predict levels of PUFA in whole blood, based on MHT and bolasso selected food items, anthropometric and lifestyle factors, and the rs174546 genotypes in FADS1 from 1,607 participants (Food4Me Study). The models were developed using data from the first reported time point (training set) and their predictive power was evaluated using data from the last reported time point (test set). Amongst other food items, fish, pizza, chicken and cereals were identified as being associated with the PUFA profiles. Using these food items and the rs174546 genotypes as predictors, models explained 26% to 43% of the variability in PUFA concentrations in the training set and 22% to 33% in the test set. CONCLUSIONS: Selecting food items using MHT is a valuable contribution to determine predictors, as our models' predictive power is higher compared to analogue studies. As unique feature, we additionally confirmed our models' power based on a test set.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the oral cavity is easily accessible to inspection, patients with oral cancer most often present at a late stage, leading to high morbidity and mortality. Autofluorescence imaging has emerged as a promising technology to aid clinicians in screening for oral neoplasia and as an aid to resection, but current approaches rely on subjective interpretation. We present a new method to objectively delineate neoplastic oral mucosa using autofluorescence imaging. Autofluorescence images were obtained from 56 patients with oral lesions and 11 normal volunteers. From these images, 276 measurements from 159 unique regions of interest (ROI) sites corresponding to normal and confirmed neoplastic areas were identified. Data from ROIs in the first 46 subjects were used to develop a simple classification algorithm based on the ratio of red-to-green fluorescence; performance of this algorithm was then validated using data from the ROIs in the last 21 subjects. This algorithm was applied to patient images to create visual disease probability maps across the field of view. Histologic sections of resected tissue were used to validate the disease probability maps. The best discrimination between neoplastic and nonneoplastic areas was obtained at 405 nm excitation; normal tissue could be discriminated from dysplasia and invasive cancer with a 95.9% sensitivity and 96.2% specificity in the training set, and with a 100% sensitivity and 91.4% specificity in the validation set. Disease probability maps qualitatively agreed with both clinical impression and histology. Autofluorescence imaging coupled with objective image analysis provided a sensitive and noninvasive tool for the detection of oral neoplasia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Optical spectroscopy is a noninvasive technique with potential applications for diagnosis of oral dysplasia and early cancer. In this study, we evaluated the diagnostic performance of a depth-sensitive optical spectroscopy (DSOS) system for distinguishing dysplasia and carcinoma from non-neoplastic oral mucosa. METHODS: Patients with oral lesions and volunteers without any oral abnormalities were recruited to participate. Autofluorescence and diffuse reflectance spectra of selected oral sites were measured using the DSOS system. A total of 424 oral sites in 124 subjects were measured and analyzed, including 154 sites in 60 patients with oral lesions and 270 sites in 64 normal volunteers. Measured optical spectra were used to develop computer-based algorithms to identify the presence of dysplasia or cancer. Sensitivity and specificity were calculated using a gold standard of histopathology for patient sites and clinical impression for normal volunteer sites. RESULTS: Differences in oral spectra were observed in: (1) neoplastic versus nonneoplastic sites, (2) keratinized versus nonkeratinized tissue, and (3) shallow versus deep depths within oral tissue. Algorithms based on spectra from 310 nonkeratinized anatomic sites (buccal, tongue, floor of mouth, and lip) yielded an area under the receiver operating characteristic curve of 0.96 in the training set and 0.93 in the validation set. CONCLUSIONS: The ability to selectively target epithelial and shallow stromal depth regions appeared to be diagnostically useful. For nonkeratinized oral sites, the sensitivity and specificity of this objective diagnostic technique were comparable to that of clinical diagnosis by expert observers. Thus, DSOS has potential to augment oral cancer screening efforts in community settings. Cancer 2009;115:1669-79. (C) 2009 American Cancer Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comparative molecular field analysis (CoMFA) studies were conducted on a series of 100 isoniazid derivatives as anti-tuberculosis agents using two receptor-independent structural data set alignment strategies: (1) rigid-body fit, and (2) pharmacophore-based. Significant cross-validated correlation coefficients were obtained (CoMFA(1), q(2) = 0,75 and CoMFA(2), q(2) = 0.74), indicating the potential of the models for untested compounds. The models were then used to predict the inhibitory potency of 20 test set compounds that were not included in the training set, and the predicted values were in good agreement with the experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

5-HT(1A) receptor plays an important role in the delayed onset of antidepressant action of a class of selective serotonin reuptake inhibitors. Moreover, 5-HT(1A) receptor levels have been shown to be altered in patients suffering from major depression. In this work, hologram quantitative structure-activity relationship (HQSAR) studies were performed on a series of arylpiperazine compounds presenting affinity to the 5-HT(1A) receptor. The models were constructed with a training set of 70 compounds. The most significant HQSAR model (q(2) = 0.81, r(2) = 0.96) was generated using atoms, bonds, connections, chirality, and donor and acceptor as fragment distinction, with fragment size of 6-9. Predictions for an external test set containing 20 compounds are in good agreement with experimental results showing the robustness of the model. Additionally, useful information can be obtained from the 2D contribution maps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leishmaniasis and trypanosomiasis are major causes of morbidity and mortality in both tropical and subtropical regions of the world. The current available drugs are limited, ineffective, and require long treatment regimens. Due to the high dependence of trypanosomatids on glycolysis as a source of energy, some glycolytic enzymes have been identified as attractive targets for drug design. In the present work, classical Two-Dimensional Quantitative Structure -Activity Relationships (2D QSAR) and Hologram QSAR (HQSAR) studies were performed on a series of adenosine derivatives as inhibitors of Leishmania mexicana Glyceraldehyde-3-Phosphate Dehydrogenase (LmGAPDH). Significant correlation coefficients (classical QSAR, r(2)=0.83 and q(2) =0.81; HQSAR, r(2)=0.91 and q(2) =0.86) were obtained for the 56 training set compounds, indicating the potential of the models for untested compounds. The models were then externally validated using a test set of 14 structurally related compounds and the predicted values were in good agreement with the experimental results (classical QSAR, r(pred)(2) = 0.94; HQSAR, r(pred)(2) = 0.92).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Worldwide, tuberculosis (TB) is the leading cause of death among curable infectious diseases. Multidrug-resistant Mycobacterium tuberculosis is an emerging problem of great importance to public health, and there is an urgent need for new anti-TB drugs. In the present work, classical 2D quantitative structure-activity relationships (QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 91 isoniazid derivatives. Significant statistical models (classical QSAR, q(2) = 0.68 and r(2) = 0.72; HQSAR, q(2) = 0.63 and r(2) = 0.86) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 24 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, r(pred)(2) = 0.87; classical QSAR, r(pred)(2) = 0.75).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chagas` disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2=0.75 and r2=0.96; classical QSAR, q2=0.72 and r2=0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, [image omitted]=0.95; classical QSAR, [image omitted]=0.91), indicating the existence of complementary between the two ligand-based drug design techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

5-HT(1A) receptor antagonists have been employed to treat depression, but the lack of structural information on this receptor hampers the design of specific and selective ligands. In this study, we have performed CoMFA studies on a training set of arylpiperazines (high affinity 5-HT(1A) receptor ligands) and to produce an effective alignment of the data set, a pharmacophore model was produced using Galahad. A statistically significant model was obtained, indicating a good internal consistency and predictive ability for untested compounds. The information gathered from our receptor-independent pharmacophore hypothesis is in good agreement with results from independent studies using different approaches. Therefore, this work provides important insights on the chemical and structural basis involved in the molecular recognition of these compounds. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a 3D face photography system based on a facial expression training dataset, composed of both facial range images (3D geometry) and facial texture (2D photography). The proposed system allows one to obtain a 3D geometry representation of a given face provided as a 2D photography, which undergoes a series of transformations through the texture and geometry spaces estimated. In the training phase of the system, the facial landmarks are obtained by an active shape model (ASM) extracted from the 2D gray-level photography. Principal components analysis (PCA) is then used to represent the face dataset, thus defining an orthonormal basis of texture and another of geometry. In the reconstruction phase, an input is given by a face image to which the ASM is matched. The extracted facial landmarks and the face image are fed to the PCA basis transform, and a 3D version of the 2D input image is built. Experimental tests using a new dataset of 70 facial expressions belonging to ten subjects as training set show rapid reconstructed 3D faces which maintain spatial coherence similar to the human perception, thus corroborating the efficiency and the applicability of the proposed system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some sesquiterpene lactones (SLs) are the active compounds of a great number of traditionally medicinal plants from the Asteraceae family and possess considerable cytotoxic activity. Several studies in vitro have shown the inhibitory activity against cells derived from human carcinoma of the nasopharynx (KB). Chemical studies showed that the cytotoxic activity is due to the reaction of alpha,beta-unsaturated carbonyl structures of the SLs with thiols, such as cysteine. These studies support the view that SLs inhibit tumour growth by selective alkylation of growth-regulatory biological macromolecules, such as key enzymes, which control cell division, thereby inhibiting a variety of cellular functions, which directs the cells into apoptosis. In this study we investigated a set of 55 different sesquiterpene lactones, represented by 5 skeletons (22 germacranolides, 6 elemanolides, 2 eudesmanolides, 16 guaianolides and nor-derivatives and 9 pseudoguaianolides), in respect to their cytotoxic properties. The experimental results and 3D molecular descriptors were submitted to Kohonen self-organizing map (SOM) to classify (training set) and predict (test set) the cytotoxic activity. From the obtained results, it was concluded that only the geometrical descriptors showed satisfactory values. The Kohonen map obtained after training set using 25 geometrical descriptors shows a very significant match, mainly among the inactive compounds (similar to 84%). Analyzing both groups, the percentage seen is high (83%). The test set shows the highest match, where 89% of the substances had their cytotoxic activity correctly predicted. From these results, important properties for the inhibition potency are discussed for the whole dataset and for subsets of the different structural skeletons. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.