957 resultados para System optimization
Resumo:
Blends of milk fat and canola oil (MF:CNO) were enzymatically interesterified (EIE) by Rhizopus oryzne lipase immobilized on polysiloxane-polyvinyl alcohol (SiO(2)-PVA) composite, in a solvent-free system. A central composite design (CCD) was used to optimize the reaction, considering the effects of different mass fractions of binary blends of MF:CNO (50:50, 65:35 and 80:20) and temperatures (45, 55 and 65 degrees C) on the composition and texture properties of the interesterified products, taking the interesterification degree (ID) and consistency (at 10 degrees C) as response variables. For the ID variable both mass fraction of milk fat in the blend and temperature were found to be significant, while for the consistency only mass fraction of milk fat was significant. Empiric models for ID and consistency were obtained that allowed establishing the best interesterification conditions: blend with 65 % of milk fat and 35 %, of canola oil, and temperature of 45 degrees C. Under these conditions, the ID was 19.77 %) and the consistency at 10 degrees C was 56 290 Pa. The potential of this eco-friendly process demonstrated that a product could be obtained with the desirable milk fat flavour and better spreadability under refrigerated conditions.
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The concentration of hydrogen peroxide is an important parameter in the azo dyes decoloration process through the utilization of advanced oxidizing processes, particularly by oxidizing via UV/H2O2. It is pointed out that, from a specific concentration, the hydrogen peroxide works as a hydroxyl radical self-consumer and thus a decrease of the system`s oxidizing power happens. The determination of the process critical point (maximum amount of hydrogen peroxide to be added) was performed through a ""thorough mapping"" or discretization of the target region, founded on the maximization of an objective function objective (constant of reaction kinetics of pseudo-first order). The discretization of the operational region occurred through a feedforward backpropagation neural model. The neural model obtained presented remarkable coefficient of correlation between real and predicted values for the absorbance variable, above 0.98. In the present work, the neural model had, as phenomenological basis the Acid Brown 75 dye decoloration process. The hydrogen peroxide addition critical point, represented by a value of mass relation (F) between the hydrogen peroxide mass and the dye mass, was established in the interval 50 < F < 60. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.
A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification
Resumo:
This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
Many works have shown the potential of the Brazilian sugarcane industry as an electricity supplier. However, few studies have studied how this potential could be achieved without jeopardizing the production of sugar and ethanol. Also, the impact of modifications in the cogeneration plant on the costs of production of sugar and ethanol has not been evaluated. This paper presents an approach to the problem of exergy optimization of cogeneration systems in sugarcane mills. A general model to the sugar and ethanol production processes is developed based on data supplied by a real plant, and an exergy analysis is performed. A discussion is made about the variables that most affect the performance of the processes. Then, a procedure is presented to evaluate modifications in the cogeneration system and in the process, and their impact on the production costs of sugar, ethanol and electricity. Furthermore, a discussion on the renewability of processes is made based on an exergy index of renewability. As a general conclusion, besides adding a new revenue to the mill, the generation of excess electricity improves the exergo-environmental performance of the mill as a whole. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Electromagnetic suspension systems are inherently nonlinear and often face hardware limitation when digitally controlled. The main contributions of this paper are: the design of a nonlinear H(infinity) controller. including dynamic weighting functions, applied to a large gap electromagnetic suspension system and the presentation of a procedure to implement this controller on a fixed-point DSP, through a methodology able to translate a floating-point algorithm into a fixed-point algorithm by using l(infinity) norm minimization due to conversion error. Experimental results are also presented, in which the performance of the nonlinear controller is evaluated specifically in the initial suspension phase. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An algorithm inspired on ant behavior is developed in order to find out the topology of an electric energy distribution network with minimum power loss. The algorithm performance is investigated in hypothetical and actual circuits. When applied in an actual distribution system of a region of the State of Sao Paulo (Brazil), the solution found by the algorithm presents loss lower than the topology built by the concessionary company.
Resumo:
This paper analyzes the complexity-performance trade-off of several heuristic near-optimum multiuser detection (MuD) approaches applied to the uplink of synchronous single/multiple-input multiple-output multicarrier code division multiple access (S/MIMO MC-CDMA) systems. Genetic algorithm (GA), short term tabu search (STTS) and reactive tabu search (RTS), simulated annealing (SA), particle swarm optimization (PSO), and 1-opt local search (1-LS) heuristic multiuser detection algorithms (Heur-MuDs) are analyzed in details, using a single-objective antenna-diversity-aided optimization approach. Monte- Carlo simulations show that, after convergence, the performances reached by all near-optimum Heur-MuDs are similar. However, the computational complexities may differ substantially, depending on the system operation conditions. Their complexities are carefully analyzed in order to obtain a general complexity-performance framework comparison and to show that unitary Hamming distance search MuD (uH-ds) approaches (1-LS, SA, RTS and STTS) reach the best convergence rates, and among them, the 1-LS-MuD provides the best trade-off between implementation complexity and bit error rate (BER) performance.
Resumo:
The thermodynamic assessment of an Al(2)O(3)-MnO pseudo-binary system has been carried out with the use of an ionic model. The use of the electro-neutrality principles in addition to the constitutive relations, between site fractions of the species on each sub-lattice, the thermodynamics descriptions of each solid phase has been determined to make possible the solubility description. Based on the thermodynamics descriptions of each phase in addition to thermo-chemical data obtained from the literature, the Gibbs energy functions were optimized for each phase of the Al(2)O(3)-MnO system with the support of PARROT(R) module from ThemoCalc(R) package. A thermodynamic database was obtained, in agreement with the thermo-chemical data extracted from the literature, to describe the Al(2)O(3)-MnO system including the solubility description of solid phases. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The optimization of the treatment process for residual waters from a brewery operating under the modality of an anaerobic reactor and activated sludge combination was studied in two phases. In the first stage, lasting for six months, the characteristics and parameters of the plant operation were analyzed, wherein a diversion rate of more than 50% to aerobic treatment, the use of two aeration tanks and a high sludge production prevailed. The second stage comprised four months during which the system worked under the proposed operational model, with the aim of improving the treatment: reduction of the diversion rate to 30% and use of only one aeration tank At each stage, TSS, VSS and COD were measured at the entrance and exit of the anaerobic reactor mid the aeration tanks. The results were compared with the corresponding design specifications and the needed conditions were applied to reduce the diversion rate towards the aerobic process through monitoring the volume and concentration of the affluent, while applying the strategic changes in reactor parameters needed to increase its efficiency. A diversion reduction from 53 to 34% was achieved, reducing the sludge discharge generated in the aerobic system from 3670mg TSS/l. with two aeration tanks down to 2947mf TSS/l using one tank keeping the same relation VSS:TSS (0.55) and an efficiency of total removal of 98% in terms of COD.
Resumo:
The influence of four variables, specifically PEG molar mass (400, 1,000, and 8,000 g/mol), concentrations of PEG and phosphate salts (15, 20, and 25% for both), and agitation intensity (110, 150, and 200 rpm), on clavulanic acid (CA) extraction by extractive fermentation with PEG/phosphate salts aqueous two-phase system was investigated in shaken flasks using a 2(4-1)-fractional factorial design. After selection of the two most significant variables (agitation intensity and PEG molar mass), an optimization study conducted according to a 2(2)-central composite design revealed that 25% PEG 8,000 g/mol and phosphate salts at 240 rpm (run 6) were the best conditions for the extractive fermentation, leading to the best results in terms of partition coefficient (k = 8.2), yield of CA in the PEG-rich phase (eta(T) = 93%) and productivity (P = 5.3 mg/Lh). As a first attempt to make a scale-up of these results, the effectiveness of the extractive fermentation was then checked in a bench-scale bioreactor under conditions as close as possible to the optimum ones determined in flasks. The highest CA concentration obtained in the PEG-rich phase (691 mg/L) was 30% higher than in flasks, thus demonstrating the potential of such a new process, integrating the production and extraction steps, as a promising, low-cost tool to obtain high yields of this and similar products. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 95-103, 2011
Resumo:
We investigate analytically the first and the second law characteristics of fully developed forced convection inside a porous-saturated duct of rectangular cross-section. The Darcy-Brinkman flow model is employed. Three different types of thermal boundary conditions are examined. Expressions for the Nusselt number, the Bejan number, and the dimensionless entropy generation rate are presented in terms of the system parameters. The conclusions of this analytical study will make it possible to compare, evaluate, and optimize alternative rectangular duct design options in terms of heat transfer, pressure drop, and entropy generation. (c) 2006 Elsevier Ltd. All rights reserved.