776 resultados para System level energy management
Resumo:
Bibliography: p. 21-22.
Resumo:
Mode of access: Internet.
Resumo:
[Pt. 1]: hearing held July 27, 1979; pt. 2: hearings before the Committee on Energy and Natural Resources, Feb. 25 and 26, 1980.
Resumo:
"B-245444"--P. 1.
Resumo:
This study demonstrates a quantitative approach to construction risk management through analytic hierarchy process and decision tree analysis. All the risk factors are identified, their effects are quantified by determining probability and severity, and various alternative responses are generated with cost implication for mitigating the quantified risks. The expected monetary values are then derived for each alternative in a decision tree framework and subsequent probability analysis aids the decision process in managing risks. The entire methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.
Resumo:
This paper describes the basic tools for a real-time decision support system of a semiotic type on the example of the prototype for management and monitoring of a nuclear power block implemented on the basis of the tool complex G2+GDA using cognitive graphics and parallel processing. This work was supported by RFBR (project 02-07-90042).
Resumo:
To explore the views of pharmacy and rheumatology stakeholders about system-related barriers to medicines optimisation activities with young people with long-term conditions. A three-phase consensus-building study comprising (1) focus groups with community and hospital pharmacists; (2) semi-structured telephone interviews with lay and professional adolescent rheumatology stakeholders and pharmacy policymakers, and (3) multidisciplinary discussion groups with community and hospital pharmacists and rheumatology staff. Qualitative verbatim transcripts from phases 1 and 2 were subjected to framework analysis. Themes from phase 1 underpinned a briefing for phase 2 interviewees. Themes from phases 1 and 2 generated elements of good pharmacy practice and current/future pharmacy roles for ranking in phase 3. Results from phase 3 prioritisation and ranking exercises were captured on self-completion data collection forms, entered into an Excel spreadsheet and subjected to descriptive statistical analysis. Institutional ethical approval was given by Aston University Health and Life Sciences Research Ethics Committee. Four focus groups were conducted with 18 pharmacists across England, Scotland and Wales (7 hospital, 10 community and 1 community/public health). Fifteen stakeholders took part in telephone interviews (3 pharmacist commissioners; 2 pharmacist policymakers; 2 pharmacy staff members (1 community and 1 hospital); 4 rheumatologists; 1 specialist nurse, and 3 lay juvenile arthritis advocates). Twenty-five participants took part in three discussion groups in adolescent rheumatology centres across England and Scotland (9 community pharmacists; 4 hospital pharmacists; 6 rheumatologists; 5 specialist nurses, and 1 physiotherapist). In all phases of the study, system-level issues were acknowledged as barriers to more engagement with young people and families. Community pharmacists in the focus groups reported that opportunities for engaging with young people were low if parents collected prescriptions alone, which was agreed by other stakeholders. Moreover, institutional/company prescription collection policies – an activity largely disallowed for a young person under 16 without an accompanying parent - were identified by hospital and community pharmacists as barriers to open discussion and engagement. Few community pharmacists reported using Medicines Use Review (England/Wales) or Chronic Medication Service (Scotland) as a medicines optimisation activity with young people; many were unsure about consent procedures. Despite these limitations, rheumatology stakeholders ranked highly the potential of pharmacists empowering young people with general health care skills, such as repeat prescription ordering. The pharmacy profession lacks vision for its role in the care of young people with long-term conditions. Pharmacists and rheumatology stakeholders identified system-level barriers to more engagement with young people who take medicines regularly. We acknowledge that the modest number of participants may have had a specific interest and thus bias for the topic, but this underscores their frank admission of the challenges. Professional guidance and policy, practice frameworks and institutional/company policies must promote flexibility for pharmacy staff to recognise and empower young people who are able to give consent and take responsibility for medicines activities. This will increase mutual confidence and trust, and foster pharmacy’s role in teaching general health care skills. In this way, pharmacists will be able to build long-term relationships with young people and families.
Resumo:
Modern IT infrastructures are constructed by large scale computing systems and administered by IT service providers. Manually maintaining such large computing systems is costly and inefficient. Service providers often seek automatic or semi-automatic methodologies of detecting and resolving system issues to improve their service quality and efficiency. This dissertation investigates several data-driven approaches for assisting service providers in achieving this goal. The detailed problems studied by these approaches can be categorized into the three aspects in the service workflow: 1) preprocessing raw textual system logs to structural events; 2) refining monitoring configurations for eliminating false positives and false negatives; 3) improving the efficiency of system diagnosis on detected alerts. Solving these problems usually requires a huge amount of domain knowledge about the particular computing systems. The approaches investigated by this dissertation are developed based on event mining algorithms, which are able to automatically derive part of that knowledge from the historical system logs, events and tickets. ^ In particular, two textual clustering algorithms are developed for converting raw textual logs into system events. For refining the monitoring configuration, a rule based alert prediction algorithm is proposed for eliminating false alerts (false positives) without losing any real alert and a textual classification method is applied to identify the missing alerts (false negatives) from manual incident tickets. For system diagnosis, this dissertation presents an efficient algorithm for discovering the temporal dependencies between system events with corresponding time lags, which can help the administrators to determine the redundancies of deployed monitoring situations and dependencies of system components. To improve the efficiency of incident ticket resolving, several KNN-based algorithms that recommend relevant historical tickets with resolutions for incoming tickets are investigated. Finally, this dissertation offers a novel algorithm for searching similar textual event segments over large system logs that assists administrators to locate similar system behaviors in the logs. Extensive empirical evaluation on system logs, events and tickets from real IT infrastructures demonstrates the effectiveness and efficiency of the proposed approaches.^
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.
Resumo:
In this article, we describe the development of an exten- sion to the Simple Knowledge Organization System (SKOS) to accommodate the needs of vocabulary devel- opment applications (VDA) managing metadata schemes and requiring close tracking of change to both those schemes and their member concepts. We take a neo- pragmatic epistemic stance in asserting the need for an entity in SKOS modeling to mediate between the abstract concept and the concrete scheme. While the SKOS model sufficiently describes entities for modeling the current state of a scheme in support of indexing and search on the Semantic Web, it lacks the expressive power to serve the needs of VDA needing to maintain scheme historical continuity. We demonstrate prelimi- narily that conceptualizations drawn from empirical work in modeling entities in the bibliographic universe, such as works, texts, and exemplars, can provide the basis for SKOS extension in ways that support more rig- orous demands of capturing concept evolution in VDA.
Resumo:
In this research we focus on the Tyndall 25mm and 10mm nodes energy-aware topology management to extend sensor network lifespan and optimise node power consumption. The two tiered Tyndall Heterogeneous Automated Wireless Sensors (THAWS) tool is used to quickly create and configure application-specific sensor networks. To this end, we propose to implement a distributed route discovery algorithm and a practical energy-aware reaction model on the 25mm nodes. Triggered by the energy-warning events, the miniaturised Tyndall 10mm data collector nodes adaptively and periodically change their association to 25mm base station nodes, while 25mm nodes also change the inter-connections between themselves, which results in reconfiguration of the 25mm nodes tier topology. The distributed routing protocol uses combined weight functions to balance the sensor network traffic. A system level simulation is used to quantify the benefit of the route management framework when compared to other state of the art approaches in terms of the system power-saving.
Resumo:
Wireless sensor networks (WSN) are becoming widely adopted for many applications including complicated tasks like building energy management. However, one major concern for WSN technologies is the short lifetime and high maintenance cost due to the limited battery energy. One of the solutions is to scavenge ambient energy, which is then rectified to power the WSN. The objective of this thesis was to investigate the feasibility of an ultra-low energy consumption power management system suitable for harvesting sub-mW photovoltaic and thermoelectric energy to power WSNs. To achieve this goal, energy harvesting system architectures have been analyzed. Detailed analysis of energy storage units (ESU) have led to an innovative ESU solution for the target applications. Battery-less, long-lifetime ESU and its associated power management circuitry, including fast-charge circuit, self-start circuit, output voltage regulation circuit and hybrid ESU, using a combination of super-capacitor and thin film battery, were developed to achieve continuous operation of energy harvester. Low start-up voltage DC/DC converters have been developed for 1mW level thermoelectric energy harvesting. The novel method of altering thermoelectric generator (TEG) configuration in order to match impedance has been verified in this work. Novel maximum power point tracking (MPPT) circuits, exploring the fractional open circuit voltage method, were particularly developed to suit the sub-1mW photovoltaic energy harvesting applications. The MPPT energy model has been developed and verified against both SPICE simulation and implemented prototypes. Both indoor light and thermoelectric energy harvesting methods proposed in this thesis have been implemented into prototype devices. The improved indoor light energy harvester prototype demonstrates 81% MPPT conversion efficiency with 0.5mW input power. This important improvement makes light energy harvesting from small energy sources (i.e. credit card size solar panel in 500lux indoor lighting conditions) a feasible approach. The 50mm × 54mm thermoelectric energy harvester prototype generates 0.95mW when placed on a 60oC heat source with 28% conversion efficiency. Both prototypes can be used to continuously power WSN for building energy management applications in typical office building environment. In addition to the hardware development, a comprehensive system energy model has been developed. This system energy model not only can be used to predict the available and consumed energy based on real-world ambient conditions, but also can be employed to optimize the system design and configuration. This energy model has been verified by indoor photovoltaic energy harvesting system prototypes in long-term deployed experiments.