962 resultados para Synthetic Aperture Radar(SAR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-sensor satellite approach based on ocean colour, sunglint and Synthetic Aperture Radar imagery is used to study the impact of interacting internal tidal (IT) waves on near-surface chlorophyll-a distribution, in the central Bay of Biscay. Satellite imagery was initially used to characterize the internal solitary wave (ISW) field in the study area, where the “local generation mechanism” was found to be associated with two distinct regions of enhanced barotropic tidal forcing. IT beams formed at the French shelf-break, and generated from critical bathymetry in the vicinities of one of these regions, were found to be consistent with “locally generated” ISWs. Representative case studies illustrate the existence of two different axes of IT propagation originating from the French shelf-break, which intersect close to 46°N, − 7°E, where strong IT interaction has been previously identified. Evidence of constructive interference between large IT waves is then presented and shown to be consistent with enhanced levels of chlorophyll-a concentration detected by means of ocean colour satellite sensors. Finally, the results obtained from satellite climatological mean chlorophyll-a concentration from late summer (i.e. September, when ITs and ISWs can meet ideal propagation conditions) suggest that elevated IT activity plays a significant role in phytoplankton vertical distribution, and therefore influences the late summer ecology in the central Bay of Biscay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetic tomography has been applied to problems in nondestructive evolution, ground-penetrating radar, synthetic aperture radar, target identification, electrical well logging, medical imaging etc. The problem of electromagnetic tomography involves the estimation of cross sectional distribution dielectric permittivity, conductivity etc based on measurement of the scattered fields. The inverse scattering problem of electromagnetic imaging is highly non linear and ill posed, and is liable to get trapped in local minima. The iterative solution techniques employed for computing the inverse scattering problem of electromagnetic imaging are highly computation intensive. Thus the solution to electromagnetic imaging problem is beset with convergence and computational issues. The attempt of this thesis is to develop methods suitable for improving the convergence and reduce the total computations for tomographic imaging of two dimensional dielectric cylinders illuminated by TM polarized waves, where the scattering problem is defmed using scalar equations. A multi resolution frequency hopping approach was proposed as opposed to the conventional frequency hopping approach employed to image large inhomogeneous scatterers. The strategy was tested on both synthetic and experimental data and gave results that were better localized and also accelerated the iterative procedure employed for the imaging. A Degree of Symmetry formulation was introduced to locate the scatterer in the investigation domain when the scatterer cross section was circular. The investigation domain could thus be reduced which reduced the degrees of freedom of the inverse scattering process. Thus the entire measured scattered data was available for the optimization of fewer numbers of pixels. This resulted in better and more robust reconstructions of the scatterer cross sectional profile. The Degree of Symmetry formulation could also be applied to the practical problem of limited angle tomography, as in the case of a buried pipeline, where the ill posedness is much larger. The formulation was also tested using experimental data generated from an experimental setup that was designed. The experimental results confirmed the practical applicability of the formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing from space-borne platforms is often seen as an appealing method of monitoring components of the hydrological cycle, including river discharge, due to its spatial coverage. However, data from these platforms is often less than ideal because the geophysical properties of interest are rarely measured directly and the measurements that are taken can be subject to significant errors. This study assimilated water levels derived from a TerraSAR-X synthetic aperture radar image and digital aerial photography with simulations from a two dimensional hydraulic model to estimate discharge, inundation extent, depths and velocities at the confluence of the rivers Severn and Avon, UK. An ensemble Kalman filter was used to assimilate spot heights water levels derived by intersecting shorelines from the imagery with a digital elevation model. Discharge was estimated from the ensemble of simulations using state augmentation and then compared with gauge data. Assimilating the real data reduced the error between analyzed mean water levels and levels from three gauging stations to less than 0.3 m, which is less than typically found in post event water marks data from the field at these scales. Measurement bias was evident, but the method still provided a means of improving estimates of discharge for high flows where gauge data are unavailable or of poor quality. Posterior estimates of discharge had standard deviations between 63.3 m3s-1 and 52.7 m3s-1, which were below 15% of the gauged flows along the reach. Therefore, assuming a roughness uncertainty of 0.03-0.05 and no model structural errors discharge could be estimated by the EnKF with accuracy similar to that arguably expected from gauging stations during flood events. Quality control prior to assimilation, where measurements were rejected for being in areas of high topographic slope or close to tall vegetation and trees, was found to be essential. The study demonstrates the potential, but also the significant limitations of currently available imagery to reduce discharge uncertainty in un-gauged or poorly gauged basins when combined with model simulations in a data assimilation framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter presents techniques used for the generation of 3D digital elevation models (DEMs) from remotely sensed data. Three methods are explored and discussed—optical stereoscopic imagery, Interferometric Synthetic Aperture Radar (InSAR), and LIght Detection and Ranging (LIDAR). For each approach, the state-of-the-art presented in the literature is reviewed. Techniques involved in DEM generation are presented with accuracy evaluation. Results of DEMs reconstructed from remotely sensed data are illustrated. While the processes of DEM generation from satellite stereoscopic imagery represents a good example of passive, multi-view imaging technology, discussed in Chap. 2 of this book, InSAR and LIDAR use different principles to acquire 3D information. With regard to InSAR and LIDAR, detailed discussions are conducted in order to convey the fundamentals of both technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines a hydrographic response to the wind‐driven coastal polynya activity over the southeastern Laptev Sea shelf for April–May 2008, using a combination of Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) and TerraSAR‐X satellite imagery, aerial photography, meteorological data, and SBE‐37 salinity‐temperature‐depth and acoustic Doppler current profiler land‐fast ice edgemoored instruments. When ASAR observed the strongest end‐of‐April polynya event with frazil ice formation, the moored instruments showed maximal acoustical scattering within the surface mixed layer, and the seawater temperatures were either at or 0.02°C below freezing. We also find evidence of the persistent horizontal temperature and salinity gradients across the fast ice edge to have the signature of geostrophic flow adjustment as predicted by polynya models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shuttle radar topography mission (SRTM), was flow on the space shuttle Endeavour in February 2000, with the objective of acquiring a digital elevation model of all land between 60 degrees north latitude and 56 degrees south latitude, using interferometric synthetic aperture radar (InSAR) techniques. The SRTM data are distributed at horizontal resolution of 1 arc-second (similar to 30m) for areas within the USA and at 3 arc-second (similar to 90m) resolution for the rest of the world. A resolution of 90m can be considered suitable for the small or medium-scale analysis, but it is too coarse for more detailed purposes. One alternative is to interpolate the SRTM data at a finer resolution; it will not increase the level of detail of the original digital elevation model (DEM), but it will lead to a surface where there is the coherence of angular properties (i.e. slope, aspect) between neighbouring pixels, which is an important characteristic when dealing with terrain analysis. This work intents to show how the proper adjustment of variogram and kriging parameters, namely the nugget effect and the maximum distance within which values are used in interpolation, can be set to achieve quality results on resampling SRTM data from 3"" to 1"". We present for a test area in western USA, which includes different adjustment schemes (changes in nugget effect value and in the interpolation radius) and comparisons with the original 1"" model of the area, with the national elevation dataset (NED) DEMs, and with other interpolation methods (splines and inverse distance weighted (IDW)). The basic concepts for using kriging to resample terrain data are: (i) working only with the immediate neighbourhood of the predicted point, due to the high spatial correlation of the topographic surface and omnidirectional behaviour of variogram in short distances; (ii) adding a very small random variation to the coordinates of the points prior to interpolation, to avoid punctual artifacts generated by predicted points with the same location than original data points and; (iii) using a small value of nugget effect, to avoid smoothing that can obliterate terrain features. Drainages derived from the surfaces interpolated by kriging and by splines have a good agreement with streams derived from the 1"" NED, with correct identification of watersheds, even though a few differences occur in the positions of some rivers in flat areas. Although the 1"" surfaces resampled by kriging and splines are very similar, we consider the results produced by kriging as superior, since the spline-interpolated surface still presented some noise and linear artifacts, which were removed by kriging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper was to evaluate attributes derived from fully polarimetric PALSAR data to discriminate and map macrophyte species in the Amazon floodplain wetlands. Fieldwork was carried out almost simultaneously to the radar acquisition, and macrophyte biomass and morphological variables were measured in the field. Attributes were calculated from the covariance matrix [C] derived from the single-look complex data. Image attributes and macrophyte variables were compared and analyzed to investigate the sensitivity of the attributes for discriminating among species. Based on these analyses, a rule-based classification was applied to map macrophyte species. Other classification approaches were tested and compared to the rule-based method: a classification based on the Freeman-Durden and Cloude-Pottier decomposition models, a hybrid classification (Wishart classifier with the input classes based on the H/a plane), and a statistical-based classification (supervised classification using Wishart distance measures). The findings show that attributes derived from fully polarimetric L-band data have good potential for discriminating herbaceous plant species based on morphology and that estimation of plant biomass and productivity could be improved by using these polarimetric attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first Brazilian mission to an asteroid is being planned. The target is the asteroid 2001 SN263, which has a NEA orbit of class AMOR. Spectral analysis indicated that this is a C-type asteroid. This type of asteroids are dark and difficult to be studied from Earth. They hold clues of the initial stages of planetary formation and also the origin of water and life on Earth. In fact, radar data showed that 2001 SN263 is composed of three bodies with diameters of about 2.8 km, 1.1 km and 0.4 km. Therefore, the spacecraft will have the opportunity to explore three bodies on the same trip. The mission is scheduled to be launched in 2015, reaching the asteroid in 2018. It will be used a small spacecraft (150 kg) with 30 kg for the payload. The set of scientific instruments being considered to explore the target of this mission include an Imaging Camera, a Laser Rangefinder, an Infrared Spectrometer, a Synthetic Aperture Radar and a Mass Spectrometer. The main measurements to be made include the bulk properties (size, shape, mass, density, dynamics, spin state), the internal properties (structure, gravity field) and surface properties (mineralogy, morphology, elemental composition). The mission also opens an opportunity for some relevant experiments, not directly related to the target. Two such experiments will take benefit from being on board of the spacecraft along the journey to the asteroid system, which will take about three years. The first is an astrobiology experiment. The main goal of this experiment is to determine the viability of the microorganisms survival in extraterrestrial environments simulated in laboratory (chemical atmosphere, temperature, desiccation, vacuum, microgravity and radiation). The second experiment is a plasma package. The main objectives of this experiment are to study the structure and electrodynamics of plasma along the trajectory, the plasma instability processes and the density and temperature of plasma of solar wind origin along the trajectory and near the asteroids. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission and details of the payload that will be used and the scientific expectations. Copyright ©2010 by the International Astronautical Federation. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lastarria volcano (Chile) is located at the North-West margin of the `Lazufre' ground inflation signal (37x45 km²), constantly uplifting at a rate of ~2.5 cm/year since 1996 (Pritchard and Simons 2002; Froger et al. 2007). The Lastarria volcano has the double interest to be superimposed on a second, smaller-scale inflation signal and to be the only degassing area of the Lazufre signal. In this project, we compared daily SO2 burdens recorded by AURA's OMI mission for 2005-2010 with Ground Surface Displacements (GSD) calculated from the Advanced Synthetic Aperture Radar (ASAR) images for 2003-2010. We found a constant maximum displacement rate of 2.44 cm/year for the period 2003-2007 and 0.80- 0.95 cm/year for the period 2007-2010. Total SO2 emitted is 67.0 kT for the period 2005-2010, but detection of weak SO2 degassing signals in the Andes remains challenging owing to increased noise in the South Atlantic radiation Anomaly region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assuming a channelized drainage system in steady state, we investigate the influence of enhanced surface melting on the water pressure in subglacial channels, compared to that of changes in conduit geometry, ice rheology and catchment variations. The analysis is carried out for a specific part of the western Greenland ice-sheet margin between 66 degrees N and 66 degrees 30' N using new high-resolution digital elevation models of the subglacial topography and the ice-sheet surface, based on an airborne ice-penetrating radar survey in 2003 and satellite repeat-track interferometric synthetic aperture radar analysis of European Remote-sensing Satellite 1 and 2 (ERS-1/-2) imagery, respectively. The water pressure is calculated up-glacier along a likely subglacial channel at distances of 1, 5 and 9 km from the outlet at the ice margin, using a modified version of Rothlisberger's equation. Our results show that for the margin of the western Greenland ice sheet, the water pressure in subglacial channels is not sensitive to realistic variations in catchment size and mean surface water input compared to small changes in conduit geometry and ice rheology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use interferometric synthetic aperture radar observations recorded in a land-terminating sector of western Greenland to characterise the ice sheet surface hydrology and to quantify spatial variations in the seasonality of ice sheet flow. Our data reveal a non-uniform pattern of late-summer ice speedup that, in places, extends over 100 km inland. We show that the degree of late-summer speedup is positively correlated with modelled runoff within the 10 glacier catchments of our survey, and that the pattern of late-summer speedup follows that of water routed at the ice sheet surface. In late-summer, ice within the largest catchment flows on average 48% faster than during winter, whereas changes in smaller catchments are less pronounced. Our observations show that the routing of seasonal runoff at the ice sheet surface plays an important role in shaping the magnitude and extent of seasonal ice sheet speedup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Advanced Land Observation System (ALOS) Phased-Array Synthetic-Aperture Radar (PALSAR) is an L-band frequency (1.27 GHz) radar capable of continental-scale interferometric observations of ice sheet motion. Here, we show that PALSAR data yield excellent measurements of ice motion compared to C-band (5.6 GHz) radar data because of greater temporal coherence over snow and firn. We compare PALSAR velocities from year 2006 in Pine Island Bay, West Antarctica with those spanning years 1974 to 2007. Between 1996 and 2007, Pine Island Glacier sped up 42% and ungrounded over most of its ice plain. Smith Glacier accelerated 83% and ungrounded as well. Their largest speed up are recorded in 2007. Thwaites Glacier is not accelerating but widening with time and its eastern ice shelf doubled its speed. Total ice discharge from these glaciers increased 30% in 12 yr and the net mass loss increased 170% from 39 ± 15 Gt/yr to 105 ± 27 Gt/yr. Longer-term velocity changes suggest only a moderate loss in the 1970s. As the glaciers unground into the deeper, smoother beds inland, the mass loss from this region will grow considerably larger in years to come.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of helicopter-borne electromagnetic measurements of total (ice plus snow) sea-ice thickness performed in May 2004 and 2005 in the Lincoln Sea and adjacent Arctic Ocean up to 86° N are presented. Thickness distributions south of 84° N are dominated by multi-year ice with modal thicknesses of 3.9 m in 2004 and 4.2 m in 2005 (mean thicknesses 4.67 and 5.18 m, respectively). Modal and mean snow thickness on multi-year ice amounted to 0.18 and 0.30 m in 2004, and 0.28 and 0.35 m in 2005. There are also considerable amounts of 0.9-2.2 m thick first-year ice (modal thickness), mostly representing ice formed in the recurring, refrozen Lincoln Polynya. Results are in good agreement with ground-based electromagnetic thickness measurements and with ice types demarcated in satellite synthetic aperture radar imagery. Four drifting buoys deployed in 2004 between 86° N and 84.5° N show a similar pattern of a mean southward drift of the ice pack of 83 ± 18 km between May 2004 and April 2005, towards the coast of Ellesmere Island and Nares Strait. The resulting area decrease of 26% between the buoys and the coast is larger than the observed thickness increase south of 84° N. This points to the importance of shear in a narrow band along the coast, and of ice export through Nares Strait in removing ice from the study region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the last decade, the Greenland ice sheet (GrIS) and its surroundings have experienced record high surface temperatures (Mote, 2007, doi:10.1029/2007GL031976; Box et al., 2010), ice sheet melt extent (Fettweis et al., 2011, doi:10.5194/tc-5-359-2011) and record-low summer sea-ice extent (Nghiem et al., 2007, doi:10.1029/2007GL031138). Using three independent data sets, we derive, for the first time, consistent ice-mass trends and temporal variations within seven major drainage basins from gravity fields from the Gravity Recovery and Climate Experiment (GRACE; Tapley et al., 2004, doi:10.1029/2004GL019920), surface-ice velocities from Inteferometric Synthetic Aperture Radar (InSAR; Rignot and Kanagaratnam, 2006, doi:10.1126/science.1121381) together with output of the regional atmospheric climate modelling (RACMO2/ GR; Ettema et al., 2009, doi:10.1029/2009GL038110), and surface-elevation changes from the Ice, cloud and land elevation satellite (ICESat; Sorensen et al., 2011, doi:10.5194/tc-5-173-2011). We show that changing ice discharge (D), surface melting and subsequent run-off (M/R) and precipitation (P) all contribute, in a complex and regionally variable interplay, to the increasingly negative mass balance of the GrIS observed within the last decade. Interannual variability in P along the northwest and west coasts of the GrIS largely explains the apparent regional mass loss increase during 2002-2010, and obscures increasing M/R and D since the 1990s. In winter 2002/2003 and 2008/2009, accumulation anomalies in the east and southeast temporarily outweighed the losses by M/R and D that prevailed during 2003-2008, and after summer 2010. Overall, for all basins of the GrIS, the decadal variability of anomalies in P, M/R and D between 1958 and 2010 (w.r.t. 1961-1990) was significantly exceeded by the regional trends observed during the GRACE period (2002-2011).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset provides scaling information applicable to satellite derived coarse resolution surface soil moisture datasets following the approach by Wagner et al. (2008). It is based on ENVISAT ASAR data and can be utilized to apply the Metop ASCAT dataset (25 km) for local studies as well as to assess the representativeness of in-situ measurement sites and thus their potential for upscaling. The approach based on temporal stability (Wagner et al. 2008) consists of the assessment of the validity of the coarse resolution datasets at medium resolution (1 km, product is the so called 'scaling layer').