976 resultados para Synchrotron radiation topography


Relevância:

80.00% 80.00%

Publicador:

Resumo:

O fósforo (P) é um nutriente essencial para o crescimento das plantas. Milhões de toneladas de P são aplicados aos solos anualmente. No entanto, apenas uma pequena fração do P aplicado com fertilizantes é aproveitada nas lavouras no ano de aplicação, bem como a eficácia do fertilizante fosfatado diminui com o tempo. Para melhorar a nossa compreensão dos mecanismos, a esta resposta do P no campo, este trabalho visa estudar a migração desse elemento em solos tropicais brasileiros (Latossolo vermelho e Latossolo amarelo) tratados com três tipos de fertilizantes: fosfato monoamônico (MAP), o polímero revestido de fosfato monoamônio (MAPP) e fosfato organomineral (OMP) em um experimento de placa de Petri. Fluorescência de Raios X por Reflexão Total (TXRF) foi usada para determinar o fluxo difusivo P a distâncias radiais diferentes (entre 0 e 7,5 mm, entre 7,5 e 13,5 mm, 13,5 e 25,5 mm e entre 25,5 e 43 mm) a partir do grânulo de fertilizante. As análises usando TXRF foram realizadas no Laboratório Nacional de Luz Síncrotron (LNLS), em Campinas, São Paulo, na linha de Fluorescência de Raios X (Beamline D09B). Depois de um período de cinco semanas, a concentração total de P, Ca e Al foram obtidas e comparadas analisando o tipo de solo/textura, o pH e o respectivo extrator de P, que nesse estudo foram usados o Mehlich 1 e água régia. De forma geral, concluiu-se que 80,0 % de fósforo proveniente dos fertilizantes usados nessa proposta ficaram concentrados em distâncias menores que 10 mm do ponto de aplicação dos fertilizantes, independentemente do tipo de solo, do pH e da respectiva textura. Em relação à utilização da técnica TXRF, o sistema foi eficiente, dentre outras características, na discriminação dos picos de fósforo dos picos de enxofre, principalmente nas amostras de solo usadas a partir da extração com Mehlich 1. Destaca-se isso, pois os raios X característicos desses elementos são muitos próximos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the optical properties of thick InGaN film grown on GaN by cathodeluminescence (CL) spectroscopy. It is found that there is obvious In composition variation in both growth and lateral direction of InGaN film. The depth distribution of In composition is closely related to the strain relaxation process of InGaN film. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and the CL peak energy shifts towards red. Moreover, a rather apparent In composition fluctuation is found in the relaxed upper part of InGaN layer as confirmed by CL imaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a study on the nucleation and initial growth kinetics of InN on GaN, especially their dependence on metalorganic chemical vapour deposition conditions. It is found that the density and size of separated InN nano-scale islands can be adjusted and well controlled by changing the V/III ratio and growth temperature. InN nuclei density increases for several orders of magnitude with decreasing growth temperature between 525 and 375 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters less than 100 nm, whereas at elevated temperatures the InN islands grow larger and become well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. The temperature dependence of InN island density gives two activation energies of InN nucleation behaviour, which is attributed to two different kinetic processes related to In adatom surface diffusion and desorption, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the influences of CCl4 on the metalorganic chemical vapor deposition (MOCVD) growth of InN were studied for the first time. It was found that the addition of CCl4 can effectively suppress the formation of metal indium (In) droplets during InN growth, which was ascribed to the etching effect of Cl to In. However, with increasing of CCl4 flow, the InN growth rate decreased but the lateral growth of InN islands was enhanced. This provides a possibility of promoting islands coalescence toward a smooth surface of the InN film by MOCVD. The influence of addition of CCl4 on the electrical properties was also investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In situ energy dispersive X-ray diffraction measurements on nanocrystalline zinc sulfide have been performed by using diamond anvil cell with synchrotron radiation. There is a phase transition which the ultimate structure is rocksalt when the pressure is up to 16.0GPa. Comparing the structure of body materials, the pressure of the phase transition of nano zinc sulfide is high. We fit the: Birch-Murnaghan equation of state and obtained its ambient pressure bulk modulus and its pressure derivative. The bulk modulus of nanocrystalline zinc sulfide is higher than that of body materials, it indicate that the rigidity of nanocrystalline zinc sulfide is high.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GaAs/AlAs/GaAlAs double barrier quantum well (DBQW) structures are employed for making 3-5 um photovoltaic infrared (IR) detectors with a peak detectivity of 5 x 10(11) cm Hz(1/2)/W at 80 K. Double crystal X-ray diffraction is combined with synchrotron radiation X-ray analysis to determine successfully the exact thickness of GaAs, AlAs and GaAlAs sublayers. The interband photovoltaic (PV) spectra of the linear array of the detectors are measured directly by edge excitation method, providing the information about spatial separation processes of photogenerated carriers in the multiquantum wells and the distribution of built-in field in the active region. The spectral response of the IR photocurrent of the devices is also measured and compared with the temperature dependent IR absorption of the DBQW samples in order to get a better understanding of the bias-controlled optical and transport behavior of the detector photoresponse and thus to optimize the detector performance. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray reflectivity curves show bi-crystal (twin) characteristics. Defect segregations at the twin boundary can be seen, whereas stress is relaxed at the edge of the boundary. Relaxation of the stress resulted in the formation of twins and other defects. As a result of the formation of such defects, a defect-free and stress-free zone or low defect density and small stress zone is created around the defects. Stress, chemical stoichiometry deviation and non-homogeneous distribution of impurities are the key factors that cause twins in LEC InP crystal growth. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of molecular nitrogen exposure on the InP(100) surface modified by the alkali metal K overlayer is investigated by core-level photoemission spectroscopy using synchrotron radiation. The alkali metal covered surface exhibits reasonable nitrogen uptake at room temperature, and results in the formation of a P3N5 nitride complex. Flash annealing at 400 degrees C greatly enhanced the formation of this kind of nitride complex. Above 500 degrees C, the nitride complex dissolved completely. (C) 1997 American Vacuum Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrathin single quantum well (about one monolayer) grown on GaAs(001) substrate with GaAs cap layer has been studied by high resolution x-ray diffractometer on a beamline of the Beijing Synchrotron Radiation Facility. The interference fringes on both sides of the GaAs(004) Bragg peak are asymmetric and a range of weak fringes in the higher angle side of the Bragg peak is observed. The simulated results by using the kinematical diffraction method shows that the weak fringe range appears in the higher angle side when the phase shift introduced by the single quantum well is very slightly smaller than m pi (m:integer), and vice versa. After introducing a reasonable model of single quantum well, the simulated pattern is in good agreement with the experiment. (C) 1996 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GaN buffer layers (thickness ~60nm) grown on GaAs(001) by low-temperature MOCVD are investigated by X-ray diffraction pole figure measurements using synchrotron radiation in order to understand the heteroepitaxial growth features of GaN on GaAs(001) substrates. In addition to the epitaxially aligned crystallites,their corresponding twins of the first and the second order are found in the X-ray diffraction pole figures. Moreover, { 111 } q scans with χ at 55° reveal the abnormal distribution of Bragg diffractions. The extra intensity maxima in the pole fig ures shows that the process of twinning plays a dominating role during the growth process. It is suggested that the polarity of { 111 } facets emerged on (001) surface will affect the growth-twin nucleation at the initial stages of GaN growth on GaAs(001) substrates. It is proposed that twinning is prone to occurring on { 111 } B, N-terminated facets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GaAs/AlAs/GaAlAs double barrier quantum well (DBQW) structures are employed for making the 3 similar to 5 mu m photovoltaic infrared (IR) detectors with a peak detectivity of 5x10(11) cmHz(1/2)/W at 80K. The double crystal x-ray diffraction is combined with synchrotron radiation x-ray analysis to determine the exact thickness of GaAs, AlAs and GaAlAs sublayers. The interband photovoltaic (PV) spect ra of the DBQW sample and the spectral response of the IR photocurrent of the devices are measured directly by edge excitation method, providing the information about spatial separation processes of photogenerated carriers in the multiquantum wells and the distribution of built-in field in the active region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work was supported by the National Science Foundation of China (60976008 and 60776015), the Special Funds for Major State Basic Research Project (973 program) of China (2006CB604907), and the 863 High Technology R&D Program of China (2007AA03Z402 and 2007AA03Z451). The authors express their appreciations to Prof. Yongliang Li (Analytical and Testing Center, Beijing Normal University) for FE-SEM measurements, to DrTieying Yang and Prof. Huanhua Wang (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences) for XRD measurements and helpful discussions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work was supported by the 863 High Technology R&D Program of China (Grant Nos. 2007AA03Z402 and 2007AA03Z451), the Special Funds for Major State Basic Research Project (973 program) of China (Grant No. 2006CB604907), and the National Science Foundation of China (Grant Nos. 60506002 and 60776015). The authors express their appreciation to Dr. Tieying Yang and Prof. Huanhua Wang (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences) for XRD measurements and helpful discussions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crystallization and phase transition behaviors of n-nonadecane in microcapsules with a diameter of about 5 mu m were studied with the combination of differential scanning calorimetry ( DSC) and synchrotron radiation X-ray diffraction ( XRD). As evident from the DSC measurement, a surface freezing monolayer, which is formed in the microcapsules before the bulk crystallization, induces a novel metastable rotator phase ( RII), which has not been reported anywhere else. We argue that the existence of the surface freezing monolayer decreases the nucleating potential barrier of the RII phase and induces its appearance, while the lower free energy in the confined geometry turns the transient RII phase to a " long- lived" metastable phase.