921 resultados para Sympatric speciation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive species may carry with them parasites from their native range, differing from parasite taxa found in the invaded range. Host switching by parasites (either from the invader to native fauna or from native fauna to the invader) may have important consequences for the viability of either type of host (e.g., their survivorship, fecundity, dispersal ability, or geographic distribution). Rhabdias pseudosphaerocephala (Nematoda) is a common parasite of cane toads (Rhinella marina) in the toad's native range (South and Central America) and also in its introduced Australian range. This lungworm can depress host viability and is capable of infecting Australian frogs in laboratory trials. Despite syntopy between toads and frogs for up to 75 yr, our analyses, based on DNA sequence data of lungworms from 80 frogs and 56 toads, collected from 2008 to 2011, did not reveal any cases of host switching in nature: toads and native frogs retain entirely different lungworm faunas. All lungworms in cane toads were the South and Central American species Rhabdias pseudosphaerocephala, whereas Australian frogs contained at least four taxa (mostly undescribed and currently lumped under the name Rhabdias cf. hylae). General patterns of prevalence and intensity, based on the dissection of 1,315 frogs collected between 1989 and 2011 across the toads' Australian range, show that these Australian endemic Rhabdias spp. are widely distributed geographically and across host taxa but are more common in some frog species (especially, large-bodied species) than they are in others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ 15N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ 15N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH4NO3) and potassium nitrate (KNO3) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH4)2SO4]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V2O5) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ 15N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the thermochemistry of the substances and the analytical technique itself. The results emphasise the difference in chemical nature of inorganic and organic samples, which necessarily involves distinct thermochemistry when analysed by EA-IRMS. Therefore, they should not be processed using the same analytical procedure. This clearly impacts on the way international secondary reference materials should be used for the calibration of organic laboratory standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproductive isolation between lineages is expected to accumulate with divergence time, but the time taken to speciate may strongly vary between different groups of organisms. In anuran amphibians, laboratory crosses can still produce viable hybrid offspring >20 My after separation, but the speed of speciation in closely related anuran lineages under natural conditions is poorly studied. Palearctic green toads (Bufo viridis subgroup) offer an excellent system to address this question, comprising several lineages that arose at different times and form secondary contact zones. Using mitochondrial and nuclear markers, we previously demonstrated that in Sicily, B. siculus and B. balearicus developed advanced reproductive isolation after Plio-Pleistocene divergence (2.6 My, 3.3-1.9), with limited historic mtDNA introgression, scarce nuclear admixture, but low, if any, current gene flow. Here, we study genetic interactions between younger lineages of early Pleistocene divergence (1.9 My, 2.5-1.3) in northeastern Italy (B. balearicus, B. viridis). We find significantly more, asymmetric nuclear and wider, differential mtDNA introgression. The population structure seems to be molded by geographic distance and barriers (rivers), much more than by intrinsic genomic incompatibilities. These differences of hybridization between zones may be partly explained by differences in the duration of previous isolation. Scattered research on other anurans suggests that wide hybrid zones with strong introgression may develop when secondary contacts occur <2 My after divergence, whereas narrower zones with restricted gene flow form when divergence exceeds 3 My. Our study strengthens support for this rule of thumb by comparing lineages with different divergence times within the same radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the advancement of phylogenetic methods to estimate speciation and extinction rates, their power can be limited under variable rates, in particular for clades with high extinction rates and small number of extant species. Fossil data can provide a powerful alternative source of information to investigate diversification processes. Here, we present PyRate, a computer program to estimate speciation and extinction rates and their temporal dynamics from fossil occurrence data. The rates are inferred in a Bayesian framework and are comparable to those estimated from phylogenetic trees. We describe how PyRate can be used to explore different models of diversification. In addition to the diversification rates, it provides estimates of the parameters of the preservation process (fossilization and sampling) and the times of speciation and extinction of each species in the data set. Moreover, we develop a new birth-death model to correlate the variation of speciation/extinction rates with changes of a continuous trait. Finally, we demonstrate the use of Bayes factors for model selection and show how the posterior estimates of a PyRate analysis can be used to generate calibration densities for Bayesian molecular clock analysis. PyRate is an open-source command-line Python program available at http://sourceforge.net/projects/pyrate/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Captures with black and white Shannon traps were undertaken to identify aspects of the behavior of the two cryptic and sympatric species implicated as vectors of cutaneous leishmaniasis, Nyssomyia intermedia (Lutz & Neiva, 1912) and Nyssomyia neivai (Pinto, 1926). The traps were installed side by side, monthly, from July 2001 to June 2002, from 18 to 07 hours, in a peridomicile of Iporanga municipality, state of São Paulo, Brazil. A total of 2,142 specimens were captured, Ny. intermedia (47.4%) and Ny. neivai (50.5%). The white trap was more attractive to both sexes of both species. Males of Ny. neivai predominated (70%) over those of Ny. intermedia on the two traps; on the black trap, the females of Ny. intermedia predominated (63.3%) over those of Ny. neivai (36.7%). Seventy percent of the specimens of both species were captured between 18 and 24 h. Females of Ny. intermedia presented the highest peak at 19-20 h, and those of Ny. neivai at 20-21 h. The highest hourly average for females of Ny. intermedia on the black trap occurred in the winter and that for males in the summer. For Ny. neivai, both sexes predominated in the summer. The two species probably transmit the cutaneous leishmaniasis in the area due to their great predominance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined whether, like many parasite-host systems of coevolution, a group of obligate parasitic bat flies (Trichobius phyllostomae Kessel and related species) cospeciate with their hosts. We first did a cladistic analysis of the T. phyllostomae group and combined that analysis with a phylogenetic hypothesis from the literature for the Stenodermatinae bats. The cladistic analysis included, as outgroups, one species from each morphological group and complex of Trichobius Gervais, and one species from the following genera: Paratrichobius Miranda-Ribeiro, Megistopoda Macquart, Megistapophysys Dick & Wenzel, Neotrichobius Wenzel & Aitken, Speiseria Kessel and Strebla Wiedemann. The cladogram was rooted with a species of Strebla in the subfamily Streblinae. One cladogram was obtained and which found Trichobius to be polyphyletic. The phylogenetic hypothesis as follows: (Paratrichobius, (Neotrichobius, (Megistopoda, Megistapophysis)))) is the sister-group of the phyllostomae group and the following relationships within the ingroup, (((T. vampyropis Wenzel, Trichobius sp. 2) ((T. hispidus Wenzel, T. petersoni Wenzel) ((Trichobius sp. 1 (T. phyllostomae, T. brennani Wenzel))))). When we compared phylogenies through historical association analyses, cospeciation was uncommon, while host-switching was more common and better explained the association between the phyllostomae group and their bat hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples were collected from hake species Merluccius australis and M. hubbsi in the south west Atlantic Ocean. Enzyme electrophoretic analysis of the eye, liver and muscle revealed 5 out of 33 genetic loci with species-specific allelic frequencies. These five loci provide a set of genetic markers for individual classification

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seven cytologically known species of the Sorex araneus complex each show a different karyotype. The three European species are genetically and morphologically very close, and mostly allopatric, thus having similar ecological requirements. It is suggested that chromosomic changes occasion a stasipatric speciation, the formation of chromosomic races in S. araneus being an illustration of this process. Neither small demes nor high inbreeding are likely in Sorex; thus the Robertsonian changes should spread out by meiotic drive alone, and the hybrids for a change should be almost fully fertile. Chromosomic speciation occurs when two incompatible metacentrics meet together. This model explains the separation between S. araneus and S. coronatus, but geographical isolation must have occured in the case of S. granarius, which keeps a primitive karyotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The environment of parasites is determined largely by their hosts. Variation in host quality, abundance and spatial distribution affects the balance between selection within hosts and gene flow between hosts, and this should determine the evolution of a parasite's host-range and its propensity to locally adapt and speciate. 2. We investigated the relationship between host spatial distribution and (1) parasite host range, (2) parasite mobility and (3) parasite geographical range, in a comparative study of a major group of avian ectoparasites, the birds fleas belonging to the Ceratophyllidae (Siphonaptera). 3. Flea species parasitizing colonial birds had narrower host ranges than those infesting territorial nesters or birds with an intermediate level of nest aggregation. 4. The potential mobility and geographical ranges of fleas decreased with increasing level of aggregation of their hosts and increased with the fleas' host ranges. 5. Birds with aggregated nest distribution harboured more flea species mainly due to a larger number of specialists than solitarily nesting hosts. 6. These results emphasize the importance of host spatial distribution for the evolution of specialization, and for local adaptation and speciation in Ceratophyllid bird fleas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY: The shrews of the Sorex araneus group are morphologically .very similar, but have undergone a spectacular chromosomal evolution. Altogether, the shrews of this group present a complete array of every possible level of chromosomal and genetic differentiation. In South-Western Europe, four species are recognised: S. antiriorii, S. araneus, S. coronatus and S. granarius, which differ essentially by the amount and the composition of Robertsonian metacentric chromosomés. Additionally, several chromosome races of S. araneus are also present in the same region (i.e. Bretolet, Carlit, Cordon, Jura and Vaud). The objective of this thesis was to examine the genetic relationships between populations, races and /or species of the Sorex araneus group with a special emphasis onsex-specific markers (mtDNA and Y chromosome). We first investigate the evolutionary history of the shrews of the Sorex araneus group distributed in the South-Western Europe. The results of. these analyses confirmed the difficulty to draw a single dichotomic tree within this group. Incongruent mtDNA and Y chromosome phylogenies suggest further that genetic and chromosomal evolution are in this group partially independent processes and that the evolutionary history of the south-western European populations of the S. araneus group can only be understood if we consider secondary contacts between taxa, after their divergence (with genetic exchanges by means of hybridization and / or introgression). Using one male-inherited, one female inherited and eight biparentally inherited markers, we investigate the population genetic structure of the Valais shrew (Sorex antinorii). Overall there results suggest that two already well-differentiated genetic lineages colonized the Swiss Alps after the last glacial period and came into contact in the Rhône Valley. After the Valais shrew (Sorex antinorii) reached the Swiss Alps, it came into contact with the common shrew (Sorex araneus). When two species come into contact and hybridize, endogenous counter-selection of hybrids is usually first expressed as a reduced fertility or viability in hybrids of the heterogametic sex, a mechanism know as Haldane's rule (Haldane 1922). We first evaluated the extent of introgression for Y chromosome, mtDNA and autosomal markers in a hybrid zone between S. antinoriii and S. araneus. The overall level of genetic and karyotypic differentiation between the two species must be strong .enough to allow the detection asymmetric introgression. Secondly, we compared the levels of gene flow between chromosome common to both species and chromosome differently rearranged in each of them. We detected a significantly stronger genetic structure in rearranged chromosomes. Over a 10-year period, we even observed a decrease of genetic structure for common chromosomes. These results strongly support the role of chromosomal rearrangements in the reproductive barrier between S. araneus and S. anfinorii. Overall, this thesis underlines the need to use different inherited (paternally, maternally and / or biparentally) and chromosomally located (on common vs. on rearranged chromosomes) markers to obtain more accurate pictures of genetic relationships between populations or species. RÉSUMÉ: Les musaraignes du groupe Sorex araneus sont morphologiquement très proches, mais ont connu une spectaculaire évolution chromosomique. Prises dans leur ensemble, les musaraignes de ce groupe présentent tous les nivaux possibles de différenciation génétique et chromosomique. Dans le sud-ouest de l'Europe, quatre espèces appartenant à ce groupe sont présentes : S. antinorii, S. araneus, S. coronatus et S. granarius. Celles-ci diffèrent essentiellement par leur caryotype dont la variabilité est principalement due à des fusions Robertsoniennes. De plus, plusieurs races chromosomiques appartenant à S. araneus sont aussi présentes dans la même région (i.e. les races Bretolet, Carlit, Cordon, Jura et Vaud). L'objectif de cette thèse était d'examiner les relations génétiques entre populations, races et/ou espèces du groupe S. araneus, en utilisant particulièrement des marqueurs liés aux sexes (ADN mitochondrial et Chromosome Y). Nous avons dans un premier temps retracé l'histoire évolutive des musaraignes de ce groupe dans le sud-ouest de l'Europe. Les résultats dé ces analyses confirment qu'il est difficile de tracer un simple arbre dichotomique au sein de ce groupe. Les arbres phylogénétiques obtenus sur l'ADN mitochondrial et le chromosome Y sont incongruents et suggèrent de plus que l'évolution génétique et chromosomique sont des processus indépendants. L'histoire évolutive -des populations de ce groupe ne peut. être comprise qu'en considérant des contacts secondaires entre taxa postérieure à leur divergence et induisant des échanges génétiques par hybridation et/ou introgression. Par la suite, nous avons examiné la structure génétique des populations de la musaraigne du Valais, S. antinorii, en utilisant un marqueur transmis par les mâles, un marqueur transmis par les femelles et huit marqueurs transmis par les 2 sexes. Nos résultats suggèrent que deux lignées génétiquement bien différenciées aient colonisé les Alpes Suisses, après les dernières glaciations et entrent en contact dans là Vallée du Rhône. Après avoir franchi les Alpes Suisses, la musaraigne du Valais est entrée en contact avec là musaraigne commune (S. araneus). Lorsque deux espèces entrent en contact et s'hybrident, la sélection contre les hybrides implique habituellement une baisse de fertilité ou de viabilité des hybrides du sexe hétérogamétique (i.e. les mâles XY chez les mammifères). Ce mécanisme est connu sous le nom de règle de Haldane (Haldane 1922) et implique une plus forte structuration génétique de marqueurs males - spécifiques que des marqueurs femelles spécifiques. Nous avons donc évalué le degré d'introgression des marqueurs situés sur le chromosome Y, sur l'ADN mitochondrial et sur des autosomes dans une zone hybride entre S. araneus et S. antinorii. Le niveau de différenciation chromosomique et génétique entre les 2 espèces doit être suffisamment fort pour ne pas permettre la détection d'une introgression asymétrique entre les sexes. Dans un second temps, nous avons comparé les niveaux de flux de gênes mesurés à l'échelle du chromosome, pour des chromosomes communs aux deux espèces et pour des chromosomes différemment arrangées dans chacune des deux espèces. Nous avons détecté une structure génétique significativement plus forte sur les chromosomes réarrangés et comme la zone hybride a été étudiée à dix années d'intervalle, nous observons même une diminution de la structure génétique pour les chromosomes communs au cours du temps.. Ces résultats soutiennent fortement l'hypothèse d'un rôle des réarrangements chromosomiques dans l'établissement d'une barrière reproductive entre S. araneus et S. antinorii. Ainsi cette thèse souligne l'utilité d'utiliser des marqueurs génétiques avec différents modes de transmission. (par les mâles, par les femelles et/ou par les 2 sexes) ou localisés au niveau du chromosome (chromosomes communs vs chromosomes réarrangés) afin d'obtenir une image plus juste ou du moins plus complète des relations génétiques entre populations ou espèces.