898 resultados para Switching regression models
Resumo:
This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.
Resumo:
The main topic of this thesis is confounding in linear regression models. It arises when a relationship between an observed process, the covariate, and an outcome process, the response, is influenced by an unmeasured process, the confounder, associated with both. Consequently, the estimators for the regression coefficients of the measured covariates might be severely biased, less efficient and characterized by misleading interpretations. Confounding is an issue when the primary target of the work is the estimation of the regression parameters. The central point of the dissertation is the evaluation of the sampling properties of parameter estimators. This work aims to extend the spatial confounding framework to general structured settings and to understand the behaviour of confounding as a function of the data generating process structure parameters in several scenarios focusing on the joint covariate-confounder structure. In line with the spatial statistics literature, our purpose is to quantify the sampling properties of the regression coefficient estimators and, in turn, to identify the most prominent quantities depending on the generative mechanism impacting confounding. Once the sampling properties of the estimator conditionally on the covariate process are derived as ratios of dependent quadratic forms in Gaussian random variables, we provide an analytic expression of the marginal sampling properties of the estimator using Carlson’s R function. Additionally, we propose a representative quantity for the magnitude of confounding as a proxy of the bias, its first-order Laplace approximation. To conclude, we work under several frameworks considering spatial and temporal data with specific assumptions regarding the covariance and cross-covariance functions used to generate the processes involved. This study allows us to claim that the variability of the confounder-covariate interaction and of the covariate plays the most relevant role in determining the principal marker of the magnitude of confounding.
Resumo:
This paper provides a theoretical model of the influence of economic crises on tourism destination performance. It discusses the temporary and permanent effects of economic crises on the global market shares of tourism destinations through a series of potential transmission mechanisms based on the main economic competitiveness determinants identified in the literature. The proposed model explains the non-neutrality of economic shocks in tourism competitiveness. The model is tested on Spain's tourism industry, which is among the leaders of the global tourism sector, for the period 1970–2013 using non-linear econometric techniques. The empirical analysis confirms that the proposed model is appropriate for explaining the changes in the market positions caused by the economic crises.
Resumo:
BACKGROUND: Patients with rheumatoid arthritis (RA) with an inadequate response to TNF antagonists (aTNFs) may switch to an alternative aTNF or start treatment from a different class of drugs, such as rituximab (RTX). It remains unclear in which clinical settings these therapeutic strategies offer most benefit. OBJECTIVE: To analyse the effectiveness of RTX versus alternative aTNFs on RA disease activity in different subgroups of patients. METHODS: A prospective cohort study of patients with RA who discontinued at least one aTNF and subsequently received either RTX or an alternative aTNF, nested within the Swiss RA registry (SCQM-RA) was carried out. The primary outcome, longitudinal improvement in 28-joint count Disease Activity Score (DAS28), was analysed using multivariate regression models for longitudinal data and adjusted for potential confounders. RESULTS: Of the 318 patients with RA included; 155 received RTX and 163 received an alternative aTNF. The relative benefit of RTX varied with the type of prior aTNF failure: when the motive for switching was ineffectiveness to previous aTNFs, the longitudinal improvement in DAS28 was significantly better with RTX than with an alternative aTNF (p = 0.03; at 6 months, -1.34 (95% CI -1.54 to -1.15) vs -0.93 (95% CI -1.28 to -0.59), respectively). When the motive for switching was other causes, the longitudinal improvement in DAS28 was similar for RTX and alternative aTNFs (p = 0.40). These results were not significantly modified by the number of previous aTNF failures, the type of aTNF switches, or the presence of co-treatment with a disease-modifying antirheumatic drug. CONCLUSION: This observational study suggests that in patients with RA who have stopped a previous aTNF treatment because of ineffectiveness changing to RTX is more effective than switching to an alternative aTNF.
Resumo:
BACKGROUND: With many atypical antipsychotics now available in the market, it has become a common clinical practice to switch between atypical agents as a means of achieving the best clinical outcomes. This study aimed to examine the impact of switching from olanzapine to risperidone and vice versa on clinical status and tolerability outcomes in outpatients with schizophrenia in a naturalistic setting. METHODS: W-SOHO was a 3-year observational study that involved over 17,000 outpatients with schizophrenia from 37 countries worldwide. The present post hoc study focused on the subgroup of patients who started taking olanzapine at baseline and subsequently made the first switch to risperidone (n=162) and vice versa (n=136). Clinical status was assessed at the visit when the first switch was made (i.e. before switching) and after switching. Logistic regression models examined the impact of medication switch on tolerability outcomes, and linear regression models assessed the association between medication switch and change in the Clinical Global Impression-Schizophrenia (CGI-SCH) overall score or change in weight. In addition, Kaplan-Meier survival curves and Cox-proportional hazards models were used to analyze the time to medication switch as well as time to relapse (symptom worsening as assessed by the CGI-SCH scale or hospitalization). RESULTS: 48% and 39% of patients switching to olanzapine and risperidone, respectively, remained on the medication without further switches (p=0.019). Patients switching to olanzapine were significantly less likely to experience relapse (hazard ratio: 3.43, 95% CI: 1.43, 8.26), extrapyramidal symptoms (odds ratio [OR]: 4.02, 95% CI: 1.49, 10.89) and amenorrhea/galactorrhea (OR: 8.99, 95% CI: 2.30, 35.13). No significant difference in weight change was, however, found between the two groups. While the CGI-SCH overall score improved in both groups after switching, there was a significantly greater change in those who switched to olanzapine (difference of 0.29 points, p=0.013). CONCLUSION: Our study showed that patients who switched from risperidone to olanzapine were likely to experience a more favorable treatment course than those who switched from olanzapine to risperidone. Given the nature of observational study design and small sample size, additional studies are warranted.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Within the nutritional context, the supplementation of microminerals in bird food is often made in quantities exceeding those required in the attempt to ensure the proper performance of the animals. The experiments of type dosage x response are very common in the determination of levels of nutrients in optimal food balance and include the use of regression models to achieve this objective. Nevertheless, the regression analysis routine, generally, uses a priori information about a possible relationship between the response variable. The isotonic regression is a method of estimation by least squares that generates estimates which preserves data ordering. In the theory of isotonic regression this information is essential and it is expected to increase fitting efficiency. The objective of this work was to use an isotonic regression methodology, as an alternative way of analyzing data of Zn deposition in tibia of male birds of Hubbard lineage. We considered the models of plateau response of polynomial quadratic and linear exponential forms. In addition to these models, we also proposed the fitting of a logarithmic model to the data and the efficiency of the methodology was evaluated by Monte Carlo simulations, considering different scenarios for the parametric values. The isotonization of the data yielded an improvement in all the fitting quality parameters evaluated. Among the models used, the logarithmic presented estimates of the parameters more consistent with the values reported in literature.
Resumo:
In this paper, we extend the debate concerning Credit Default Swap valuation to include time varying correlation and co-variances. Traditional multi-variate techniques treat the correlations between covariates as constant over time; however, this view is not supported by the data. Secondly, since financial data does not follow a normal distribution because of its heavy tails, modeling the data using a Generalized Linear model (GLM) incorporating copulas emerge as a more robust technique over traditional approaches. This paper also includes an empirical analysis of the regime switching dynamics of credit risk in the presence of liquidity by following the general practice of assuming that credit and market risk follow a Markov process. The study was based on Credit Default Swap data obtained from Bloomberg that spanned the period January 1st 2004 to August 08th 2006. The empirical examination of the regime switching tendencies provided quantitative support to the anecdotal view that liquidity decreases as credit quality deteriorates. The analysis also examined the joint probability distribution of the credit risk determinants across credit quality through the use of a copula function which disaggregates the behavior embedded in the marginal gamma distributions, so as to isolate the level of dependence which is captured in the copula function. The results suggest that the time varying joint correlation matrix performed far superior as compared to the constant correlation matrix; the centerpiece of linear regression models.
Resumo:
Authors discuss the effects that economic crises generate on the global market shares of tourism destinations, through a series of potential transmission mechanisms based on the main economic competitiveness determinants identified in the previous literature using a non-linear approach. Specifically a Markov Switching Regression approach is used to estimate the effect of two basic transmission mechanisms: reductions of internal and external tourism demands and falling investment.
Resumo:
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.
Resumo:
In this paper, we present various diagnostic methods for polyhazard models. Polyhazard models are a flexible family for fitting lifetime data. Their main advantage over the single hazard models, such as the Weibull and the log-logistic models, is to include a large amount of nonmonotone hazard shapes, as bathtub and multimodal curves. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. A discussion of the computation of the likelihood displacement as well as the normal curvature in the local influence method are presented. Finally, an example with real data is given for illustration.
Resumo:
We introduce the log-beta Weibull regression model based on the beta Weibull distribution (Famoye et al., 2005; Lee et al., 2007). We derive expansions for the moment generating function which do not depend on complicated functions. The new regression model represents a parametric family of models that includes as sub-models several widely known regression models that can be applied to censored survival data. We employ a frequentist analysis, a jackknife estimator, and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes, and censoring percentages, several simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to evaluate the model assumptions. The extended regression model is very useful for the analysis of real data and could give more realistic fits than other special regression models.
Resumo:
In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency.