876 resultados para Sweet condensed milk
Resumo:
A two-stage iterative algorithm for selecting a subset of a training set of samples for use in a condensed nearest neighbor (CNN) decision rule is introduced. The proposed method uses the concept of mutual nearest neighborhood for selecting samples close to the decision line. The efficacy of the algorithm is brought out by means of an example.
Resumo:
Cow s milk allergy (CMA) affects about 2-6% of infants and young children. Environmental factors during early life are suggested to play a role in the development of allergic diseases. One of these factors is likely to be maternal diet during pregnancy and lactation. The association between maternal diet and development of CMA in offspring is not well known, but diet could contain factors that facilitate development of tolerance. After an established food allergy, another issue is gaining tolerance towards an antigen that causes symptoms. The strictness of the elimination depends on the individual level of tolerance. This study aimed at validating a questionnaire used to inquire about food allergies in children, at researching associations between maternal diet during pregnancy and lactation and subsequent development of cow s milk allergy in the offspring, and at evaluating the degree of adherence to a therapeutic elimination diet of children with CMA and factors associated with the adherence and age of recovery. These research questions were addressed in a prospective birth cohort born between 1997 and 2004 at the Tampere and Oulu University Hospitals. Altogether 6753 children of the Diabetes Prediction and Prevention (DIPP) Nutrition cohort were investigated. Questionnaires regarding allergic diseases are often used in studies without validation. High-quality valid tools are therefore needed. Two validation studies were conducted here: one by comparing parentally reported food allergies with information gathered from patient records of 1122 children, and the other one by comparing parentally reported CMA with information in the reimbursement records of special infant formulae in the registers of the Social Insurance Institution for 6753 children. Both of these studies showed that the questionnaire works well and is a valid tool for measuring food allergies in children. In the first validation study, Cohen s kappa values were within 0.71-0.88 for CMA, 0.74-0.82 for cereal allergy, and 0.66-0.86 for any reported food allergy. In the second validation study, the kappa value was 0.79, sensitivity 0.958, and specificity 0.965 for reported and diagnosed CMA. To investigate the associations between maternal diet during pregnancy and lactation and CMA in offspring, 6288 children were studied. Maternal diet during pregnancy (8th month) and lactation (3rd month) was assessed by a validated, 181-item semi-quantitative food frequency questionnaire (FFQ), and as an endpoint register-based information on diagnosed CMA was obtained from the Social Insurance Institution and complemented with parental reports of CMA in their children. The associations between maternal food consumption and CMA in offspring were analyzed by logistic regression comparing the highest and lowest quarters with two middle quarters of consumption and adjusted for several potential confounding factors. High maternal intake of milk products (OR 0.56, 95% CI 0.37-0.86 p = 0.002) was associated with a lower risk of CMA in offspring. When stratified according to maternal allergic rhinitis or asthma, a protective association of high use of milk products with CMA was seen in children of allergy-free mothers (OR 0.30, 95% CI 0.13 - 0.69, p < 0.001), but not in children of allergic mothers. Moreover, low maternal consumption of fish during pregnancy was associated with a higher risk of CMA in children of mothers with allergic rhinitis or asthma (OR 1.47, 95% CI 0.96 - 2.27 for the lowest quarter, p = 0.043). In children of nonallergic mothers, this association was not seen. Maternal diet during lactation was not associated with CMA in offspring, apart from an inverse association between citrus and kiwi fruit consumption and CMA. These results imply that maternal diet during pregnancy may contain factors protective against CMA in offspring, more so than maternal diet during lactation. These results need to be confirmed in other studies before giving recommendations to the public. To evaluate the degree of adherence to a therapeutic elimination diet in children with diagnosed CMA, food records of 267 children were studied. Subsequent food records were examined to assess the age at reintroduction of milk products to the child s diet. Nine of ten families adhered to the elimination diet of the child with extreme accuracy. Older and monosensitized children had more often small amounts of cow s milk protein in their diet (p < 0.001 for both). Adherence to the diet was not related to any other sociodemographic factor studied or to the age at reintroduction of milk products to the diet. Low intakes of vitamin D, calcium, and riboflavin are of concern in children following a cow s milk-free diet. In summary, we found that the questionnaires used in the DIPP study are valid in investigating CMA in young children; that there are associations between maternal diet during pregnancy and lactation and the development of CMA in offspring; and that the therapeutic elimination diet in children with diagnosed CMA is rigorously adhered to.
Phase relations and thermodynamic properties of condensed phases in the system calcium-copper-oxygen
Resumo:
The isothermal sections of the phase diagram for the system Ca-Cu-0 at 1073 and 1223 K have been determined. Several compositions in the ternary system were quenched after equilibration, and the phases present were identified by optical microscopy, X-ray diffraction, and electron probe microanalysis. Two ternary compounds Ca2CuO3 and Cao.8&uO1.9s were identified at 1073 K. However, only Ca2CuO3 was found to be stable at 1223 K. The thermodynamic properties of the two ternary compounds were determined using solid-state cells incorporating either an oxide or a fluoride solid electrolyte. The results for both types of cells were internally consistent. The compound C ~ O . ~ & U Ow~h.i~ch~ c, a n also be represented as Ca15Cu18035h, as been identified in an earlier investigation as Cao.828CuOz. Using a novel variation of the galvanic cell technique, in which the emf of a cell incorporating a fluoride electrolyte is measured as a function of the oxygen potential of the gas phase in equilibrium with the condensed phase electrodes, it has been confirmed that the compound Cao.828CuO1.93 (Ca15Cu18035d) oes not have significant oxygen nonstoichiometry. Phase relations have been deduced from the thermodynamic data as a function of the partial pressure of oxygen for the system Ca-Cu-0 at 873, 1073, and 1223 K.
Resumo:
We illustrate the potential of using higher order critical points in the deeper understanding of several interesting problems of condensed matter science, e.g. critical adsorption, finite size effects, morphology of critical fluctuations, reversible aggregation of colloids, dynamics of the ordering process, etc.
Resumo:
Pn this perspective on the increasingly important field of soft condensed matter science, I make the case for a concentrated multidisciplinary effort to develop the area in India. I base my arguments on its demonstrated potential for new 'emergent' phenomena, interesting table-top experiments, and applications.
Resumo:
This review highlights the physics aspects of soft condensed matter to show that these are novel systems to explore cooperative behaviour in condensed matter under equilibrium and non-equilibrium conditions. A case is made for focusing research in this-area in our country.
Resumo:
The total solids of samples of ass's milk ranged from 7·80 to 9·10, the solids-not-fat from 7·14 to 8·50, and the fat from 0·54 to 0·71%. The nitrogen distribution in ass's milk is: casein 39·5, albumin 35·0, globulin 2·7 and non-protein nitrogen 22·8% of the total nitrogen. Ass's milk contains: casein 0·70, albumin 0·62 and globulin 0·07%. The total protein content is 1·39%. Ass's milk is therefore characterized by a low casein, a low globulin and a high albumin content. The non-protein nitrogen consists of amino nitrogen 8·1, urea nitrogen 24·3 and uric acid 0·7 mg./100 ml. of milk. The urea content is twice that present in cow's milk. The mean chloride and lactose contents of the milk samples are 0·037 and 6·1% respectively. The average calcium and phosphorus content of ass's milk are 0·081 and 0·059% respectively. Half the calcium is ionic, and half is in colloidal form. The phosphorus distribution is: total acid soluble 84·0, acid soluble organic 38·5, easily hydrolysable ester 27·4, inorganic 46·0, and colloidal inorganic 23·0 % of the total phosphorus. The ratio of CaO: P2O5 is 1:1. 46 % of the total phosphorus is in ester form; this is high when compared with only 12 % in cow's milk; most of the phosphoric ester forms soluble barium salts, which is a distinguishing feature of ass's milk. The total sulphur content is 15·8 mg./100 ml. The fat has a penetrating odour and is coloured orange-yellow. It has an iodine value of about 86, which is much higher than that for human milk fat. The Reichert (9·5) and Kirschner values (5·7) are low. In general, the composition of ass's milk resembles that of human rather than of cow's milk.
Resumo:
A novel PCR based assay was devised to specifically detect contamination of any Salmonella serovar in milk, fruit juice and ice-cream without pre-enrichment. This method utilizes primers against hilA gene which is conserved in all Salmonella serovars and absent from the close relatives of Salmonella. An optimized protocol, in terms time and money, is provided for the reduction of PCR contaminants from milk, ice-cream and juice through the use of routine laboratory chemicals. The simplicity, efficiency (time taken 3-4 h) and sensitivity (to about 5-10 CFU/ml) of this technique confers a unique advantage over other previously used time consuming detection techniques. This technique does not involve pre-enrichment of the samples or extensive sample processing, which was a pre-requisite in most of the other reported studies. Hence, this assay can be ideal for adoption, after further fine tuning, by food quality control for timely detection of Salmonella contamination as well as other food-borne pathogens (with species specific primers) in food especially milk, ice-cream and fruit juice. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The relative energies of triangular face sharing condensed macro polyhedral carboranes: CB20H18 and C2B19H18+ derived from mono- and di-substitution of carbons in (4) B21H18- is calculated at B3LYP/6-31G* level. The relative energies, H center dot center dot center dot H non-bonding distances, NICS values, topological charge analysis and orbital overlap compatibility connotes the face sharing condensed macro polyhedral mono-carboranes, 8 (4-CB20H18) to be the lowest energy isomer. The di-carba- derivative, (36) 4,4'a-C2B19H18+ with carbons substituted in a different B-12 cage in (4) B21H18- in anti-fashion is the most stable isomer among 28 possibilities. This structure has less non-bonding H center dot center dot center dot H interaction and is in agreement with orbital-overlap compatibility, and these two have the pivotal role in deciding the stability of these clusters. An estimate of the inherent stability of these carboranes is made using near-isodesmic equations which show that CB20H18 (8) is in the realm of the possible. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This is an account of a professional life in the field that was generally known as solid-state physics when I started working in it; India and the United States of America are the countries in which this life was largely played out. My attempts to understand various things in condensed matter physics, and efforts to put together people and activities in India in this field, are mainly the story.
Resumo:
The digestibility and utilisation of two fresh soybean milk concentrate based diets, two stale soybean milk concentrate based diets and two Fishman based diets serving as control, at optimal (30%) and suboptimal (20%) protein levels were evaluated in Oreochromis niloticus. The diets were as follows: Diet I (control) - fishmeal based diet at 30% crude protein, Diet II (control) Fishman based diet at 20% crude protein, Diet III - fresh soybean milk concentrate based diet at 30% crude protein, Diet IV - fresh soybean milk concentrate based diet at 20%, Diet V - stale soybean milk concentrate based diet at 30% crude protein, Diet VI-stale soybean milk concentrate based diet at 20%. Dry matter digestibility differed not significantly with variation in diets (P:0.05). A significant variation was recorded in the protein, lipid and ash digestibility. Proteins were more digestible at optimum than suboptimum level. Ash digestibility was lowest of all the nutrients. Variations in the utilisation of the diets in terms of weight gain, specific growth rate, food conversion ration, protein efficiency ration and apparent net protein utilization were insignificant (P: 0.05). All diets compared favourably with the standard control diet Diet I. This findings suggest the suitability of stale soybean milk concentrate utilisation as protein supplements in the diets of late fry Oreochromis niloticus
Resumo:
Part I:
The earth's core is generally accepted to be composed primarily of iron, with an admixture of other elements. Because the outer core is observed not to transmit shear waves at seismic frequencies, it is known to be liquid or primarily liquid. A new equation of state is presented for liquid iron, in the form of parameters for the 4th order Birch-Murnaghan and Mie-Grüneisen equations of state. The parameters were constrained by a set of values for numerous properties compiled from the literature. A detailed theoretical model is used to constrain the P-T behavior of the heat capacity, based on recent advances in the understanding of the interatomic potentials for transition metals. At the reference pressure of 105 Pa and temperature of 1811 K (the normal melting point of Fe), the parameters are: ρ = 7037 kg/m3, KS0 = 110 GPa, KS' = 4.53, KS" = -.0337 GPa-1, and γ = 2.8, with γ α ρ-1.17. Comparison of the properties predicted by this model with the earth model PREM indicates that the outer core is 8 to 10 % less dense than pure liquid Fe at the same conditions. The inner core is also found to be 3 to 5% less dense than pure liquid Fe, supporting the idea of a partially molten inner core. The density deficit of the outer core implies that the elements dissolved in the liquid Fe are predominantly of lower atomic weight than Fe. Of the candidate light elements favored by researchers, only sulfur readily dissolves into Fe at low pressure, which means that this element was almost certainly concentrated in the core at early times. New melting data are presented for FeS and FeS2 which indicate that the FeS2 is the S-hearing liquidus solid phase at inner core pressures. Consideration of the requirement that the inner core boundary be observable by seismological means and the freezing behavior of solutions leads to the possibility that the outer core may contain a significant fraction of solid material. It is found that convection in the outer core is not hindered if the solid particles are entrained in the fluid flow. This model for a core of Fe and S admits temperatures in the range 3450K to 4200K at the top of the core. An all liquid Fe-S outer core would require a temperature of about 4900 K at the top of the core.
Part II.
The abundance of uses for organic compounds in the modern world results in many applications in which these materials are subjected to high pressures. This leads to the desire to be able to describe the behavior of these materials under such conditions. Unfortunately, the number of compounds is much greater than the number of experimental data available for many of the important properties. In the past, one approach that has worked well is the calculation of appropriate properties by summing the contributions from the organic functional groups making up molecules of the compounds in question. A new set of group contributions for the molar volume, volume thermal expansivity, heat capacity, and the Rao function is presented for functional groups containing C, H, and O. This set is, in most cases, limited in application to low molecular liquids. A new technique for the calculation of the pressure derivative of the bulk modulus is also presented. Comparison with data indicates that the presented technique works very well for most low molecular hydrocarbon liquids and somewhat less well for oxygen-bearing compounds. A similar comparison of previous results for polymers indicates that the existing tabulations of group contributions for this class of materials is in need of revision. There is also evidence that the Rao function contributions for polymers and low molecular compounds are somewhat different.
Resumo:
Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz, 3 cm-1 to 300 cm-1, or 3000 μm to 30 μm) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 cm-1) and the mid-IR (400 - 4000 cm-1). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with ~10 GHz (~0.3 cm-1) resolution.
Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm-1 (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.
To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoiumbased THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 cm-1), in exact agreement with the fundamental transition frequency of the υ4 vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies.
To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the groups core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.
Resumo:
I. PHOSPHORESCENCE AND THE TRUE LIFETIME OF TRIPLET STATES IN FLUID SOLUTIONS
Phosphorescence has been observed in a highly purified fluid solution of naphthalene in 3-methylpentane (3-MP). The phosphorescence lifetime of C10H8 in 3-MP at -45 °C was found to be 0.49 ± 0.07 sec, while that of C10D8 under identical conditions is 0.64 ± 0.07 sec. At this temperature 3-MP has the same viscosity (0.65 centipoise) as that of benzene at room temperature. It is believed that even these long lifetimes are dominated by impurity quenching mechanisms. Therefore it seems that the radiationless decay times of the lowest triplet states of simple aromatic hydrocarbons in liquid solutions are sensibly the same as those in the solid phase. A slight dependence of the phosphorescence lifetime on solvent viscosity was observed in the temperature region, -60° to -18°C. This has been attributed to the diffusion-controlled quenching of the triplet state by residual impurity, perhaps oxygen. Bimolecular depopulation of the triplet state was found to be of major importance over a large part of the triplet decay.
The lifetime of triplet C10H8 at room temperature was also measured in highly purified benzene by means of both phosphorescence and triplet-triplet absorption. The lifetime was estimated to be at least ten times shorter than that in 3-MP. This is believed to be due not only to residual impurities in the solvent but also to small amounts of impurities produced through unavoidable irradiation by the excitation source. In agreement with this idea, lifetime shortening caused by intense flashes of light is readily observed. This latter result suggests that experiments employing flash lamp techniques are not suitable for these kinds of studies.
The theory of radiationless transitions, based on Robinson's theory, is briefly outlined. A simple theoretical model which is derived from Fano's autoionization gives identical result.
Il. WHY IS CONDENSED OXYGEN BLUE?
The blue color of oxygen is mostly derived from double transitions. This paper presents a theoretical calculation of the intensity of the double transition (a 1Δg) (a 1Δg)←(X 3Σg-) (X 3Σg-), using a model based on a pair of oxygen molecules at a fixed separation of 3.81 Å. The intensity enhancement is assumed to be derived from the mixing (a 1Δg) (a 1Δg) ~~~ (X 3Σg-) (X 3Σu-) and (a 1Δg) (1Δu) ~~~ (X 3Σg-) (X 3Σg-). Matrix elements for these interactions are calculated using a π-electron approximation for the pair system. Good molecular wavefunctions are used for all but the perturbing (B 3Σu-) state, which is approximated in terms of ground state orbitals. The largest contribution to the matrix elements arises from large intramolecular terms multiplied by intermolecular overlap integrals. The strength of interaction depends not only on the intermolecular separation of the two oxygen molecules, but also as expected on the relative orientation. Matrix elements are calculated for different orientations, and the angular dependence is fit to an analytical expression. The theory therefore not only predicts an intensity dependence on density but also one on phase at constant density. Agreement between theory and available experimental results is satisfactory considering the nature of the approximation, and indicates the essential validity of the overall approach to this interesting intensity enhancement problem.