974 resultados para Sweet citrus fruit export
Resumo:
Asiatic citrus canker, caused by Xanthomonas smithii ssp. citri, formerly X. axonopodis pv. citri, is one of the most serious phytosanitary problems in Brazilian citrus crops. Experiments were conducted under controlled conditions to assess the influence of temperature and leaf wetness duration on infection and subsequent symptom development of citrus canker in sweet orange cvs Hamlin, Natal, Pera and Valencia. The quantified variables were incubation period, disease incidence, disease severity, mean lesion density and mean lesion size at temperatures of 12, 15, 20, 25, 30, 35, 40 and 42 degrees C, and leaf wetness durations of 0, 4, 8, 12, 16, 20 and 24 h. Symptoms did not develop at 42 degrees C. A generalized beta function showed a good fit to the temperature data, severity being highest in the range 30-35 degrees C. The relationship between citrus canker severity and leaf wetness duration was explained by a monomolecular model, with the greatest severity occurring at 24 h of leaf wetness, with 4 h of wetness being the minimum duration sufficient to cause 100% incidence at optimal temperatures of 25-35 degrees C. Mean lesion density behaved similarly to disease severity in relation to temperature variation and leaf wetness duration. A combined monomolecular-beta generalized model fitted disease severity, mean lesion density or lesion size as a function of both temperature and duration of leaf wetness. The estimated minimum and maximum temperatures for the occurrence of disease were 12 degrees C and 40 degrees C, respectively.
Resumo:
GA3 was tested in sweet oranges 'Pera' and 'Hamlin' for delay the picking time without loosening of fruit quality for processing. Hamlin is the firths cv processed in Brazil and Pera is a mid season cv and extending their period of processing is important. Two experiments were made at the Citrus Experimental Station during 1996 season. The treatments are 5 ppm of GA 3 + 0,05% Silwett L-77® (organosilicone), 10 ppm of GA 3 + 0,05% of Silwet L-77®, 20 ppm of GA3 + 0,1% Herbitensil® (Noniphenoloxietilate 40%m/v + isopropilic alcohol 15% m/v) and control, repeated 7 times for Hamlin and 8 times for Pera, with one tree each parcel. The treatments were applied in May 1996, at the stage of greenish yellow colour of the fruits. Evaluations were made each 20 days interval till the final picking, It was analysed fruit quality and retention force for picking and puncture resistance. The results showed no differences for fruit quality of Hamlin from July to mid September and for Pera till September. After some differences occurred. The GA3 treatments were effectives in maintain the fruit retention force for both cvs for 120 days after application. In relation to fruit puncture resistance the treatments with GA3 differed of the control for both cvs, accordingly with the doses and mixtures. The colour index was better maintained with 5ppm of GA3 plus 0,05% of Silwet L-77®. The total fruit production did not differ for both cultivars.
Resumo:
To study translocation of Xylella fastidiosa to citrus rootstocks, budsticks from citrus variegated chlorosis (CVC)-affected cv. Pera sweet orange (Citrus sinenesis (L.) Osb.) were top grafted on 15 citrus rootstocks. Disease symptoms were conspicuous 3 months later on all 15 rootstocks tested. The presence of X. fastidiosa was confirmed by light microscopy, double-antibody sandwich enzyme-linked immunosorbent assays, and polymerase chain reaction in rootlets and main roots of CVC-symptomatic Pera sweet orange in 11 of the 15 rootstocks tested. These results suggest that bacterial translocation from the aerial plant parts to the root system occurs but is not essential for X. fastidiosa to induce symptoms in the aerial parts. Bacterial translocation to the roots was not correlated with CVC leaf-symptom severity in the Pera scion. To determine if CVC disease could be transmitted by natural root grafts, two matched seedlings of each of four sweet orange cultivars (Pera, Natal, Valencia, and Caipira) were transplanted into single pots. One seedling rootstock of each pair was inoculated by top grafting with a CVC-contaminated budstick while the other seedling rootstock was cut but not graft inoculated. Transmission of X. fastidiosa from an inoculated plant to a noninoculated plant sharing the same pot was observed in all four sweet orange cultivars tested. Transmission was confirmed by observation of natural roots grafts between the two plants, presence of X. fastidiosa in the root grafts, and disease development in the uninoculated plants. This is the first report of transmission of CVC disease through natural root grafts.
Resumo:
Sweet orange is considered a very important species in the citrus world market and presents wide morphological variability. However, its characterization at the molecular level by random amplified polymorphic DNA (RAPD) and isozyme markers is not appropriate. Microsatellite or simple sequence repeats (SSRs) have been suggested as ideal for studies in cultures of vegetative propagation and as value markers for mapping in several species. However, information on microsatellite polymorphism in citrus species is scarce. In this work, microsatellite markers (AG-repeats) were developed from an enrichment library of genomic DNA of sweet orange cv. Pera (Citrus sinensis [L.] Osbeck), and 31 cultivars of sweet orange were evaluated. Evaluation of 18 microsatellite primers did not permit differentiation of the varieties studied. New microsatellite primers are being evaluated with the aim of detecting polymorphisms among the cultivars and closely related species to be used in genetic mapping programs.
Resumo:
Postbloom fruit drop (PFD) of citrus caused by Colletotrichum acutatum produces orange-brown lesions on petals and induces the abscission of young fruitlets and the retention of the calyces. Despite the fact that C. acutatum is not highly sensitive to benomyl in culture, this fungicide provides good control of the disease under field conditions. This study was undertaken to determine the effect of benomyl on various stages of disease development to understand the basis for its effectiveness in the field. We found that benomyl at 1.0 μg/ml reduced colony area of C. acutatum by about 75% and completely inhibited growth of C. gloeosporioides. Benomyl did not prevent conidial germination even at 100 μg/ml, but reduced germ tube elongation at 10 and 100 μg/ml. When benomyl was applied to flower clusters on screen-house-grown plants before inoculation, disease severity was greatly reduced. Applications at 24 and 48 h, but not at 72 h, after inoculation reduced PFD severity. Application of benomyl to symptomatic petals not bearing conidia did not prevent or reduce production of inoculum. Application to petals bearing conidia reduced viability of these fungal propagules by only about 50%. The viability of appressoria on mature leaves was not affected by benomyl application. Even when appressoria on mature leaves were stimulated to germinate by treatment with flower extracts, subsequent application of benomyl did not reduce propagule numbers below original levels. Benomyl appears to act by preventing infection and early development of the fungus in petals. However, once symptoms have developed, this fungicide has only minimal effects on further disease development and spread.
Resumo:
Postbloom fruit drop (PFD) of citrus, caused by Colletotrichum acutatum, infects petals of citrus flowers and produces orange-brown lesions that induce the abscission of young fruitlets and the retention of calyces. Proper timing of fungicide applications is essential for good disease control. Different systems for timing of fungicide applications for control of PFD in a major citrus-growing region in southern São Paulo state in Brazil were evaluated from 1999 to 2002. The following programs were compared to an unsprayed control using counts of diseased flowers, persistent calyces, or fruit: (i) a phenology-based program currently recommended in Brazil with one application at early and another at peak bloom; (ii) the Florida PFD model; (iii) the postbloom fruit drop-fungicide application decision system (PFD-FAD), a new computer-assisted decision method; and (iv) grower's choice. In 1999, no disease developed, sprays applied with the phenology-based program had no effect, and the Florida PFD model saved two sprays compared with the phenology-based program. In 2000, PFD was moderate and the phenology-based and growers' choice treatments had a significantly lower number of persistent calyces and higher fruit numbers than the control, but no differences were found between those treatments and the PFD model. In 2001, PFD was severe with considerable yield loss. The PFD model, the phenology-based program, and the grower's choice reduced flower blight and the number of persistent calyces, and improved fruit yields with two to three applications, but the PFD-FAD achieved comparable yields with only one spray. In 2002, the disease was mild, with no yield loss, and the Florida PFD model and the PFD-FAD saved one spray compared with the other systems. The PFD model and the PFD-FAD were equally effective for timing fungicide applications to control PFD in Brazil. Scouting of trees is simpler with PFD-FAD; therefore, this system is recommended and should eliminate unnecessary sprays and reduce costs for growers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Huanglongbing (HLB) is associated with Candidatus Liberibacter spp., endogenous, sieve tube-restricted bacteria that are transmitted by citrus psyllid insect vectors. Transgenic expression in the phloem of specific genes that might affect Ca. Liberibacter spp. growth and development may be an adequate strategy to improve citrus resistance to HLB. To study specific phloem gene expression in citrus, we developed three different binary vector constructs with expression cassettes bearing the beta-glucuronidase (GUS) reporter gene (uidA) under the control of one of the three different promoters: Citrus phloem protein 2 (CsPP2), Arabidopsis thaliana phloem protein 2 (AtPP2), and Arabidopsis thaliana sucrose transporter 2 (AtSUC2). Transgenic lines of 'Hamlin', 'Pera', and 'Valencia' sweet oranges [Citrus sinensis (L.) Osbeck] were produced via Agrobacterium tumefaciens transformation. The epicotyl segments collected from in vitro germinated seedlings were used as explants. The gene nptII, which confers resistance to the antibiotic kanamycin, was used for selection. The transformation efficiency was expressed as the number of GUS-positive shoots over the total number of explants and varied from 1.54 to 6.08 % among the three cultivars and three constructs studied. Several lines of the three sweet orange cultivars analyzed using PCR and Southern blot analysis were genetically transformed with the three constructs evaluated. The histological GUS activity in the leaves indicates that the uidA gene was preferentially expressed in the phloem, which suggests that the use of the three promoters might be adequate for producing HLB-resistant transgenic sweet oranges. The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters. Key message The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters.
Resumo:
An ecological life table for eggs and nymphs of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) was constructed with data obtained from orange orchards (Citrus sinensis Osbeck) in 2 regions of the State of Sao Paulo, over 4 generations in the period from XI-2006 to V-2007, comprising spring, summer, and fall seasons. Young growing shoots with D. citri eggs present were identified, and live individuals were counted until adult emergence. No predatory arthropods were observed in association with D. citri eggs and nymphs during the study. The mean parasitism of fourth- and fifth-instar nymphs by Tamarixia radiata Waterston (Hymenoptera: Eulophidae) was 2.3%. The durations of the egg-adult period were similar among the 4 generations, ranging from 18.0 to 24.7 d (at mean temperatures ranging from 21.6 to 26.0 degrees C) and followed the temperature requirement models obtained in the laboratory for D. citri. However, survival from the egg to the adult stage for the same period varied considerably from 1.7 to 21.4%; the highest mortalities were observed in the egg and small nymphal (first- to thirdinstar) stages, which were considered to be key phases for population growth of the pest.
Resumo:
Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model "diploid embryogenic callus protoplast + diploid mesophyll-derived protoplast". Protoplasts were isolated from embryogenic calli of 'Pera' and 'Westin' sweet orange cultivars (Citrus sinensis) and from young leaves of 'Fremont', Nules', and 'Thomas' mandarins (C. reticulata), and 'Nova' tangelo [C. reticulata x (C. paradisi x C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when 'Pera' sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of 'Pera' sweet orange + 'Fremont' mandarin, 3 'Pera' sweet orange + 'Nules' mandarin, and 2 'Pera' sweet orange + 'Nova' tangelo, and all the diploid regenerated plants showed the 'Pera' sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96 h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.
Resumo:
In Brazil, citrus black spot (CBS) caused by Guignardia citricarpa is a major disease that has different symptoms on fruit. In this study, fruit of Citrus sinensis infected by G. citricarpa and showing the symptoms false melanosis, freckle spot and hard spot were cross-sectioned and analysed anatomically and histochemically by light microscopy. Immuno-histological assays were performed. All symptoms were accompanied by a thickening of the cuticle. False melanosis lesions did not contain pycnidia and remained restricted to the epicarp or to the first layers of the mesocarp. The stomata in this type of lesion showed phenolic compounds in the guard cells and in the sub-stomatal chamber. In some samples, the guard cells and their surrounding cells lysed, and a wound meristem began to form underneath them. Freckle spot and hard spot lesions had very similar histological alterations to the epicarp and mesocarp, but in our samples only hard spot lesions contained pycnidia. Both of these symptoms were accompanied by protein inclusions. Epidermal and sub-epidermal cells located in the oil-gland region were obliterated, causing alterations in these structures. All symptoms had regions that stained strongly for lipids and phenols.
Resumo:
Citrus leprosis, caused by Citrus leprosis virus C (CiLV-C), is currently considered the most important viral disease in the Brazilian citrus industry due to the high costs required for the chemical control of its vector, the mite Brevipalpus phoenicis. The pathogen induces a non-systemic infection and the disease is characterized by the appearance of localized lesions on citrus leaves, stems and fruits, premature fruit and leaf drop and dieback of stems. Attempts were made to promote in vitro expression of the putative cell-to-cell movement protein of CiLV-C in Escherichia coli and to produce a specific polyclonal antibody against this protein as a tool to investigate the virus-plant-vector relationship. The antibody reacted strongly with the homologous protein expressed in vitro by ELISA, but poorly with the native protein present in leaf lesion extracts from sweet orange caused by CiLV-C. Reactions from old lesions were more intense than those from young lesions. Western blot and in situ immunolocalization assays failed to detect the native protein. These results suggest low expression of the movement protein (MP) in host tissues. Moreover, it is possible that the conformation of the protein expressed in vitro and used to produce the antibody differs from that of the native MP, hindering a full recognition of the latter.
Resumo:
The objective of this work was to select adequate early-maturing sweet orange cultivars for the fresh fruit market and for industrial processing using performance indexes. Performance indexes for citrus were established from data collected in an experiment carried out in the southwest region of the state of Sao Paulo, involving 12 early-maturing sweet orange cultivars. New results were obtained by identifying cultivars with superior characteristics. In a comparison with 'Hamlin' sweet orange, a standard early-maturing cultivar, 'Valencia 2' and 'Salustiana' were considered better materials for the fresh fruit market, whereas 'Westin' sweet orange was identified as a superior cultivar for orange juice processing.
Resumo:
Four Citrus species (C. sinensis, cvs. Pera and Lima; C. latifolia Tanaka cv. Tahiti; C limettioides Tanaka cv. Sweet lime and C. reticulate, cv. Ponkan) grown in Brazil were characterised in relation to contents of minerals, ascorbic acid, total polyphenols and antioxidant capacity of pulps and peels. In general, the peels demonstrated significantly higher contents of all compounds than the pulps (p < 0.05), with the exception of the Pera orange pulp that presented the highest acid ascorbic content (68 mg/100 ml), while the Tahiti lime peel presented the lowest (8 mg/100 g). Citrus showed high levels of potassium, calcium and magnesium, and the peels were considered sources of these minerals. The Ponkan mandarin peel presented the highest antioxidant capacity. The antioxidant capacity of citrus was correlated both to vitamin C and phenolics. Aside from citrus pulps, the peels are also good sources of bioactive compounds and minerals, and can be explored for their health promoting values in food products. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot's PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.