985 resultados para Surface coverage
Resumo:
Strategies for the development of new vaccines against Streptococcus pneumoniae infections try to overcome problems such as serotype coverage and high costs, present in currently available vaccines. Formulations based on protein candidates that can induce protection in animal models have been pointed as good alternatives. Among them, the Pneumococcal Surface Protein A (PspA) plays an important role during systemic infection at least in part through the inhibition of complement deposition on the pneumococcal surface, a mechanism of evasion from the immune system. Antigen delivery systems based on live recombinant lactic acid bacteria (LAB) represents a promising strategy for mucosal vaccination, since they are generally regarded as safe bacteria able to elicit both systemic and mucosal immune responses. In this work, the N-terminal region of clade I PspA was constitutively expressed in Lactobacillus casei and the recombinant bacteria was tested as a mucosal vaccine in mice. Nasal immunization with L. casei-PspA 1 induced anti-PspA antibodies that were able to bind to pneumococcal strains carrying both clade 1 and clade 2 PspAs and to induce complement deposition on the surface of the bacteria. In addition, an increase in survival of immunized mice after a systemic challenge with a virulent pneumococcal strain was observed. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
We report time evolution studies of low coverage CO adsorption (surface hydrogen site blocking < 40%) and oxidative stripping on stepped Pt(776) and Pt(554) surfaces. It was observed that there is no preferential site occupancy for CO adsorption on step or terrace. It is proposed that CO adsorption onto these surfaces is a random process, and after CO adsorption there is no appreciable shift from CO-(111) to CO-(110) sites. This implies that after adsorption, CO molecules either have a very long residence time, or that the diffusion coefficient is much lower than previously thought. After CO electrooxidation the sites released included both terrace (111) and step (110) orientations. For surface hydrogen site blocking > 40%, the lateral interactions might play a role in the preferential CO site occupancy. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The oscillatory electro-oxidation of methanol was studied by means of in situ infrared (IR) spectroscopy in the attenuated total reflection (ATR) configuration using a platinum film on a Si prism as working electrode. The surface-enhanced infrared absorption (SEIRA) effect considerably improves the spectroscopic resolution, allowing at following the coverage of some adsorbing species during the galvanostatic oscillations. Carbon monoxide was the main adsorbed specie observed in the induction period and within the oscillatory regime. The system was investigated at two distinct time-scales and its dynamics characterized accordingly. During the induction period the main transformation observed as the system move through the phase space towards the oscillatory region was the decrease of the coverage of adsorbed carbon, coupled to the increase of the electrode potential. Similar transition characterizes the evolution within the oscillatory region, but at a considerably slower rate. Experiments with higher time resolution revealed that the electrode potential oscillates in-phase with the frequency of the linearly adsorbed CO vibration and that the amount of adsorbed CO oscillates with small amplitude. Adsorbed formate was found to play, if any, a very small role. Results are discussed and compared with other systems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: the purpose of this study was to histomorphometrically evaluate the response of periodontal tissues covering Class V resin restorations in dogs.Methods: After raising a mucoperiosteal flap, bony defects measuring 5 x 5 mm were created on the buccal aspect of the canines of five dogs followed by cavity preparations on the root surface measuring 3 x 3 x 1 mm. Before repositioning the flap to cover the bone defect, the cavities were restored with composite resin (CR) or resin-modified glass ionomer cement (RMGIC) or were left unrestored as control (C). The dogs were euthanized 90 days after surgery. Specimens comprising the tooth and periodontal tissues were removed, processed routinely, cut into longitudinal serial sections in the bucco-lingual direction, and stained with hematoxylin and eosin (H&E) or Masson's trichrome. The most central sections were selected for histomorphometric analysis.Results: Histomorphometric analysis revealed apical migration of epithelial tissue onto the restorative materials (RMGIC and CR). The C group presented significantly longer connective tissue attachment (P < 0.05) than the RMGIC and CR groups and significantly higher bone regeneration (P < 0.05) compared to the RMGIC group. Histologically, the cervical third (CT) of all groups had the most marked chronic inflammatory infiltrate.Conclusions: Within the limits of this study, it can be concluded that the restorative materials used exhibit biocompatibility; however, both materials interfered with the development of new bone and the connective tissue attachment process.
Resumo:
The purpose of this article is to report the use of the subepithelial connective tissue graft technique combined with the coronally positioned flap on a composite resin-restored root surface to treat Miller Class I gingival recessions associated with deep cervical abrasions in maxillary central incisors. Clinical measurements, including gingival recession height, probing depth, and bleeding on probing (BoP), were recorded during the preoperative clinical examination and at 2, 6, 12, and 24 months postoperatively. During the follow-up periods, no periodontal pockets or BoP were observed. The periodontal tissue of the teeth presented normal color, texture, and contouring. In addition, it was observed that creeping attachment had occurred on the restoration. This case report shows that this form of treatment can be highly effective and predictable in resolving gingival recession associated with a deep cervical abrasion. (Quintessence Int 2012;43:597-602)
Resumo:
Kinetic studies of hydrogen evolution reaction (HER) at the surface of Pt in alkaline conditions, reported in this paper, show that electrocatalytic activity is enhanced after adsorption of S-2 ions. EIS and steady-state polarization curve data pointed to an undoubted improvement in performance with the Pt-S cathode that was attributed to higher adsorbed hydrogen coverage. Experimental findings suggested an increase in the electronic density of the modified surface sites that may strengthen the interaction between H2O and the adsorption site and, consequently, accelerates the Volmer step. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new process for the surface modification of hydrogen storage intermetallic particles used as anode material in secondary batteries is proposed in this article. The copper oxide particles coverage obtained by the sol-gel method is proposed to produce, under operational conditions of a Ni-MH battery, a metallic framework that tolerates the volume changes in charge/discharge cycles and does not inhibit the hydrogen absorption. Furthermore it was noticed an enhancement on the discharge capacity of the electrode material that can be related to a new hydrogen storage phase or to an inhibition of the surface oxidation promoted by the film coverage.
Resumo:
Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites.
Resumo:
Pneumococcal surface protein C (PspC) is an important candidate for a cost-effective vaccine with broad coverage against pneumococcal diseases. Previous studies have shown that Streptococcus pneumoniae is able to bind to both human factor H (FH), an inhibitor of complement alternative pathway, and human secretory IgA (sIgA) via PspC. PspC was classified into 11 groups based on variations of the gene. In this work, we used three PspC fragments from different groups (PspC3, PspC5, and PspC8) to immunize mice for the production of antibodies. Immunization with PspC3 induced antibodies that recognized the majority of the clinical isolates as analyzed by Western blotting of whole-cell extracts and flow cytometry of intact bacteria, while anti-PspC5 antibodies showed cross-reactivity with the paralogue pneumococcal surface protein A (PspA), and anti-PspC8 antibodies reacted only with the PspC8-expressing strain. Most of the isolates tested showed strong binding to FH and weaker interaction with sIgA. Preincubation with anti-PspC3 and anti-PspC5 IgG led to some inhibition of binding of FH, and preincubation with anti-PspC3 partially inhibited sIgA binding in Western blotting. The analysis of intact bacteria through flow cytometry showed only a small decrease in FH binding after incubation of strain D39 with anti-PspC3 IgG, and one clinical isolate showed inhibition of sIgA binding by anti-PspC3 IgG. We conclude that although anti-PspC3 antibodies were able to recognize PspC variants from the majority of the strains tested, partial inhibition of FH and sIgA binding through anti-PspC3 antibodies in vitro could be observed for only a restricted number of isolates.
Resumo:
Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites.
Resumo:
This paper presents for the first time a morphological and surface sediment characterization of the Uruguayan outer continental shelf and slope. The study is based on a high-resolution coverage using hydrographical, geomorphological and sedimentological sampling and several textural and productivity proxies. Along slope terraces and an important canyon system characterizes continental slope morphology, indicating that across- and down-slope sedimentary processes control large-scale sedimentation. Terraces represent the prolongation of the Argentinean Contouritic Depositional System that vanishes in the study area, presumably as a result of the dynamic of the Brazil-Malvinas confluence. Canyons incised in the upper slope are likely related to low-stand sea level conditions. At the outer shelf and shallow upper slope (170-250 m depth), off-shelf sand transport is inferred from the distribution of relict sand and reworked biogenic gravel. In the upper continental slope, the northern region is characterized by an erosive environment controlled by a steep slope and the southward flowing Brazil current. In the south, a depositional environment is enhanced by the presence of a gentler slope and seaward incised canyons and is mainly controlled by hemipelagic processes associated with nutrient-rich Sub-Antarctic Waters (SAW), by its confluence with South Atlantic Central Waters (SACW) and by the Rio de la Plata’s (RdlP) influence. Additionally, within the upper slope, the occurrence of igneous-metamorphic cobbles and pebbles in canyon and mound lag deposits suggests the influence of glacial fluvial discharge and/or iceberg transport processes. In the middle slope, sedimentation is controlled by thermohaline-induced deep-water bottom currents. The decreasing influence of the erosive Antarctic Intermediate Water (AAIW) is evident in a northward diminution in grain size. The variety of transport and sedimentary processes identified reflect the control of the Brazil-Malvinas confluence zone and the Rio de la Plata’s discharge.
Resumo:
Background: Neisseria meningitides represents a major cause of meningitis and sepsis. The meningococcal regulator NadR was previously shown to repress the expression of the Neisserial Adhesin A (NadA) and play a major role in its phase-variation. NadA is a surface exposed protein involved in epithelial cell adhesion and colonization and a major component of 4CMenB, a novel vaccine to prevent meningococcus serogroup B infection. The NadR mediated repression of NadA is attenuated by 4-HPA, a natural molecule released in human saliva. Results: In this thesis we investigated the global role of NadR during meningogoccal infection, identifying through microarray analysis the NadR regulon. Two distinct types of NadR targets were identified, differing in their promoter architectures and 4HPA responsive activities: type I are induced, while type II are co-repressed in response to the same 4HPA signal. We then investigate the mechanism of regulation of NadR by 4-HPA, generating NadR mutants and identifying classes or residues involved in either NadR DNA binding or 4HPA responsive activities. Finally, we studied the impact of NadR mediated repression of NadA on the vaccine coverage of 4CMenB. A selected MenB strains is not killed by sera from immunized infants when the strain is grown in vitro, however, in an in vivo passive protection model, the same sera protected infant rats from bacteremia. Finally, using bioluminescent reporters, nadA expression in the infant rat model was induced in vivo at 3 h post-infection. Conclusions: Our results suggest that NadR coordinates a broad transcriptional response to signals present in the human host, enabling the meningococcus to adapt to the relevant host niche. During infectious disease the effect of the same signal on NadR changes between different targets. In particular NadA expression is induced in vivo, leading to efficient killing of meningococcus by anti-NadA antibodies elicited by the 4CMenB vaccine.
Resumo:
This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.
Resumo:
OBJECTIVE Acetabular rim trimming is indicated in pincer hips with an oversized lunate surface but could result in a critically decreased size of the lunate surface in pincer hips with acetabular malorientation. There is a lack of detailed three-dimensional anatomy of lunate surface in pincer hips. Therefore, we questioned how does (1) size and (2) shape of the lunate surface differ among hips with different types of pincer impingement? METHOD We retrospectively compared size and shape of the lunate surface between acetabular retroversion (48 hips), deep acetabulum (34 hips), protrusio acetabuli (seven hips), normal acetabuli (30 hips), and hip dysplasia (45 hips). Using magnetic resonance imaging (MRI) arthrography with radial slices we measured size in percentage of the femoral head coverage and shape using the outer (inner) center-edge angles and width of lunate surface. RESULTS Hips with retroversion had a decreased size and deep hips had normal size of the lunate surface. Both had a normal shape of the outer acetabular rim. Protrusio hips had an increased size and a prominent outer acetabular rim. In all three types of pincer hips the acetabular fossa was increased. CONCLUSION Size and shape of the lunate surface differs substantially among different types of pincer impingement. In contrast to hips with protrusio acetabuli, retroverted and deep hips do not have an increased size of the lunate surface. Acetabular rim trimming in retroverted and deep hips should be performed with caution. Based on our results, acetabular reorientation would theoretically be the treatment of choice in retroverted hips.
Resumo:
One of the most promising applications for the restoration of small or moderately sized focal articular lesions is mosaicplasty (MP). Although recurrent hemarthrosis is a rare complication after MP, recently, various strategies have been designed to find an effective filling material to prevent postoperative bleeding from the donor site. The porous biodegradable polymer Polyactive (PA; a polyethylene glycol terephthalate - polybutylene terephthalate copolymer) represents a promising solution in this respect. A histological evaluation of the longterm PA-filled donor sites obtained from 10 experimental horses was performed. In this study, attention was primarily focused on the bone tissue developed in the plug. A computer-assisted image analysis and quantitative polarized light microscopic measurements of decalcified, longitudinally sectioned, dimethylmethylene blue (DMMB)- and picrosirius red (PS) stained sections revealed that the coverage area of the bone trabecules in the PA-filled donor tunnels was substantially (25%) enlarged compared to the neighboring cancellous bone. For this quantification, identical ROIs (regions of interest) were used and compared. The birefringence retardation values were also measured with a polarized light microscope using monochromatic light. Identical retardation values could be recorded from the bone trabeculae developed in the PA and in the neighboring bone, which indicates that the collagen orientation pattern does not differ significantly among these bone trabecules. Based on our new data, we speculate that PA promotes bone formation, and some of the currently identified degradation products of PA may enhance osteo-conduction and osteoinduction inside the donor canal.