942 resultados para Suprachiasmatic Nucleus
Resumo:
《胞内共生与细胞研究》( 《Endocytobiosis and Cell Research》)是由国际胞内共生学会(International Society of Endocytobiology, ISE)主办的期刊, 它主要发表有关内共生物(endosy mbioses)和真核细胞的起源、发展、分化、进化和系统发育的研究论文. 在胞内共生和真核细胞的起源进化研究领域享有声誉. 去年该杂志发表了我国学者李靖炎先生的长篇论著“The primitive nucleus model and the origin of the cell nucleus(原始细胞核的模型与细胞核的起源)”(见1999, 13(1-3):1-86). 国外一家 SCI 收录的专业性刊物为中国学者发表一篇长达86页的 Review, 实不多见, 是我国学者在此领域的殊荣。
Resumo:
The plant circadian clock is proposed to be a network of several interconnected feedback loops, and loss of any component leads to changes in oscillator speed. We previously reported that Arabidopsis thaliana EARLY FLOWERING4 (ELF4) is required to sustain this oscillator and that the elf4 mutant is arrhythmic. This phenotype is shared with both elf3 and lux. Here, we show that overexpression of either ELF3 or LUX ARRHYTHMO (LUX) complements the elf4 mutant phenotype. Furthermore, ELF4 causes ELF3 to form foci in the nucleus. We used expression data to direct a mathematical position of ELF3 in the clock network. This revealed direct effects on the morning clock gene PRR9, and we determined association of ELF3 to a conserved region of the PRR9 promoter. A cis-element in this region was suggestive of ELF3 recruitment by the transcription factor LUX, consistent with both ELF3 and LUX acting genetically downstream of ELF4. Taken together, using integrated approaches, we identified ELF4/ELF3 together with LUX to be pivotal for sustenance of plant circadian rhythms. © 2012 American Society of Plant Biologists.
Resumo:
Tissue engineering offers a paradigm shift in the treatment of back pain. Engineered intervertebral discs could replace degenerated tissue and overcome the limitations of current treatments, which substantially alter the biomechanical properties of the spine. The centre of the disc, the nucleus pulposus, is an amorphous gel with a large bound water content and it can resist substantial compressive loads. Due to similarities in their compositions, hydrogels have frequently been considered as substitutes for the nucleus pulposus. However, there has been limited work characterising the time-dependent mechanical behaviour of hydrogel scaffolds for nucleus pulposus tissue engineering. Poroelastic behaviour, which plays a key role in nutrient transport, is of particular importance. Here, we investigate the time-dependent mechanical properties of gelatin and agar hydrogels and of gelatin-agar composites. The time-dependent properties of these hydrogels are explored using viscoelastic and poroelastic frameworks. Several gel formulations demonstrate comparable equilibrium elastic behaviour to the nucleus pulposus under unconfined compression, but permeability values that are much greater than those of the native tissue. A range of time-dependent responses are observed in the composite gels examined, presenting the opportunity for targeted design of custom hydrogels with combinations of mechanical properties optimized for tissue engineering applications. © 2011 Elsevier Ltd.
Resumo:
New materials are needed to replace degenerated intervertebral disc tissue and to provide longer-term solutions for chronic back-pain. Replacement tissue potentially could be engineered by seeding cells into a scaffold that mimics the architecture of natural tissue. Many natural tissues, including the nucleus pulposus (the central region of the intervertebral disc) consist of collagen nanofibers embedded in a gel-like matrix. Recently it was shown that electrospun micro- or nano-fiber structures of considerable thickness can be produced by collecting fibers in an ethanol bath. Here, randomly aligned polycaprolactone electrospun fiber structures up to 50 mm thick are backfilled with alginate hydrogels to form novel composite materials that mimic the fiber-reinforced structure of the nucleus pulposus. The composites are characterized using both indentation and tensile testing. The composites are mechanically robust, exhibiting substantial strain-to-failure. The method presented here provides a way to create large biomimetic scaffolds that more closely mimic the composite structure of natural tissue. © 2012 Materials Research Society.
Resumo:
Bleached mutants of Euglena gracilis were obtained by treatment with ofloxacin (Ofl) and streptomycin (Sm) respectively. As shown by electron microscopy, the residual plastids contain prothylakoids in an Ofl mutant, and the highly developed and tightly stacked membranous structure found in cells of two Sm, mutants. Nine genes of the plastid genome were examined with PCR, showing that ribosomal protein genes and most other plastid genes were lost in all but one Sm mutant. Using differential display and RT-PCR, it was shown that chloroplast degeneration could cause changes in transcription of certain nucleus-encoded genes during heterotrophic growth in darkness.
Resumo:
High-spin states in 189Pt have been studied experimentally using the 176Yb(18O,5n) reaction at beam energies of 88 and 95 MeV. The level scheme of189Pt has been revised significantly and extended to high-spin states.Rotational bands have been analyzed in the framework of triaxial particle-rotor model, and a γ ≈−30◦triaxial shape and a near-prolate shape have been proposed to the νi−113/2 and νf5/2(p3/2) bands, respectively. Two ΔI = 2 transition sequences with similar energies have been observed, and they have been proposed to be associated with the νi−213/2νf5/2(p3/2) configuration. The structure built on the νi−213/2νf5/2(p3/2) configuration could be interpreted theoretical calculations of the triaxial particle-rotor model if a near-oblate shape is assumed.