813 resultados para Subtractive clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The k-means algorithm is an extremely popular technique for clustering data. One of the major limitations of the k-means is that the time to cluster a given dataset D is linear in the number of clusters, k. In this paper, we employ height balanced trees to address this issue. Specifically, we make two major contributions, (a) we propose an algorithm, RACK (acronym for RApid Clustering using k-means), which takes time favorably comparable with the fastest known existing techniques, and (b) we prove an expected bound on the quality of clustering achieved using RACK. Our experimental results on large datasets strongly suggest that RACK is competitive with the k-means algorithm in terms of quality of clustering, while taking significantly less time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The keyword based search technique suffers from the problem of synonymic and polysemic queries. Current approaches address only theproblem of synonymic queries in which different queries might have the same information requirement. But the problem of polysemic queries,i.e., same query having different intentions, still remains unaddressed. In this paper, we propose the notion of intent clusters, the members of which will have the same intention. We develop a clustering algorithm that uses the user session information in query logs in addition to query URL entries to identify cluster of queries having the same intention. The proposed approach has been studied through case examples from the actual log data from AOL, and the clustering algorithm is shown to be successful in discerning the user intentions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistometric studies of isochronal and isothermal annealing of an Al-0.64 at.% Ag alloy have given a value of 0.13 ± 0.02 eV for the silver-vacancy binding energy and 0.55 ± 0.03 eV for the migration energy of solute atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of 0.03 and 0.08 at. % Ag additions on the clustering of Zn atoms in an Al-4.4 at. % Zn alloy has been studied by resistometry. The effect of quenching and ageing temperatures shows that the ageing-ratio method of calculating the vacancy-solute atom binding energy is not applicable to these alloys. Zone-formation in Al-Zn is unaffected by Ag additions, but the zone-reversion process seems to be influenced. Apparent vacancy-formation energies in the binary and ternary alloys have been used to evaluate the v-Ag atom binding energy as 0.21 eV. It is proposed that, Ag and Zn being similar in size, the relative vacancy binding results from valency effects, and that in Al-Zn-Ag alloys clusters of Zn and Ag may form simultaneously, unaffected by the presence of each other. © 1970 Chapman and Hall Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isochronal and isothermal ageing experiments have been carried out to determine the influence of 0.01 at. % addition of a second solute on the clustering rate in the quenched Al-4,4 a/o Zn alloy. The influence of quenching and ageing temperatures has been interpreted to obtain the apparent vacancy formation and vacancy migration energies in the various ternary alloys. Using a vacancy-aided clustering model the following values of binding free energy have been evaluated: Ce-0.18; Dy-0.24; Fe-0.18; Li-0.25; Mn-0.27; Nb-0.18; Pt-0.23; Sb-0.21; Si-0.30; Y-0.25; and Yb-0.23 (± 0.02 eV). These binding energy values refer to that between a solute atom and a single vacancy. The values of vacancy migration energy (c. 0.4 eV) and the experimental activation energy for solute diffusion (c. 1.1 eV) are unaffected by the presence of the ternary atoms in the Al-Zn alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-4.4 a/oZn and Al-4.4 a/oZn with Ag, Ce, Dy, Li, Nb, Pt, Y, or Yb, alloys have been investigated by resistometry with a view to study the solute-vacancy interactions and clustering kinetics in these alloys. Solute-vacancy binding energies have been evaluated for all these elements by making use of appropriate methods of evaluation. Ag and Dy additions yield some interesting results and these have been discussed in the thesis. Solute-vacancy binding energy values obtained here have been compared with other available values and discussed. A study of the type of interaction between vacancies and solute atoms indicates that the valency effect is more predominant than the elastic effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We view association of concepts as a complex network and present a heuristic for clustering concepts by taking into account the underlying network structure of their associations. Clusters generated from our approach are qualitatively better than clusters generated from the conventional spectral clustering mechanism used for graph partitioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the clustering pattern in the Finnish stock market. Using trading volume and time as factors capturing the clustering pattern in the market, the Keim and Madhavan (1996) and the Engle and Russell (1998) model provide the framework for the analysis. The descriptive and the parametric analysis provide evidences that an important determinant of the famous U-shape pattern in the market is the rate of information arrivals as measured by large trading volumes and durations at the market open and close. Precisely, 1) the larger the trading volume, the greater the impact on prices both in the short and the long run, thus prices will differ across quantities. 2) Large trading volume is a non-linear function of price changes in the long run. 3) Arrival times are positively autocorrelated, indicating a clustering pattern and 4) Information arrivals as approximated by durations are negatively related to trading flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a method for scaling SVM with Gaussian kernel function to handle large data sets by using a selective sampling strategy for the training set. It employs a scalable hierarchical clustering algorithm to construct cluster indexing structures of the training data in the kernel induced feature space. These are then used for selective sampling of the training data for SVM to impart scalability to the training process. Empirical studies made on real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for determining the mutual nearest neighbours (MNN) and mutual neighbourhood value (mnv) of a sample point, using the conventional nearest neighbours, is suggested. A nonparametric, hierarchical, agglomerative clustering algorithm is developed using the above concepts. The algorithm is simple, deterministic, noniterative, requires low storage and is able to discern spherical and nonspherical clusters. The method is applicable to a wide class of data of arbitrary shape, large size and high dimensionality. The algorithm can discern mutually homogenous clusters. Strong or weak patterns can be discerned by properly choosing the neighbourhood width.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonparametric, hierarchical, disaggregative clustering algorithm is developed using a novel similarity measure, called the mutual neighborhood value (MNV), which takes into account the conventional nearest neighbor ranks of two samples with respect to each other. The algorithm is simple, noniterative, requires low storage, and needs no specification of the expected number of clusters. The algorithm appears very versatile as it is capable of discerning spherical and nonspherical clusters, linearly nonseparable clusters, clusters with unequal populations, and clusters with lowdensity bridges. Changing of the neighborhood size enables discernment of strong or weak patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper deals with a model-theoretic approach to clustering. The approach can be used to generate cluster description based on knowledge alone. Such a process of generating descriptions would be extremely useful in clustering partially specified objects. A natural byproduct of the proposed approach is that missing values of attributes of an object can be estimated with ease in a meaningful fashion. An important feature of the approach is that noisy objects can be detected effectively, leading to the formation of natural groups. The proposed algorithm is applied to a library database consisting of a collection of books.