901 resultados para Submarine Pipeline
Resumo:
Offshore and onshore buried pipelines under high operating temperature and pressures may lead to upheaval buckling (UHB) if sufficient soil cover is not present to prevent the upward movement of the pipeline. In regions where seasonal changes involve ground soil undergoing freezing-thawing cycles, the uplift resistance from soil cover may be minimum when the soil is undergoing thawing. This paper presents the results from 2 directly-comparable minidrum centrifuge tests conducted at the Schofield Centre, University of Cambridge, to investigate the difference in uplift resistance responses between fully-saturated and thawed sandy backfill conditions. Both tests were conducted drained at 30g using an 8.6 mm diameter aluminium model pipe, corresponding to a prototype pipe diameter of 258 mm. The soil cover/pipe diameter ratio, H/D, was kept at 1. Fraction E fine silica sand was used as the backfill. Preliminary experimental results indicated that the ultimate uplift resistance of a thawing sand backfill to be lower than that of a fully saturated sand backfill. This suggests that in regions where backfill soil undergoes freeze-thaw cycles, the thawing backfill may be more critical than fully saturated backfill for uplift resistance. The 2-dimensional displacement field during the experiment was accurately measured and analysed using the Particle Image Velocimetry technique. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
Submarines are efficient sources of low frequency radiated noise due to the vibrations induced by the rotation of the propeller in a non uniform wake. In this work the possibility of using inertial actuators to reduce the far field sound pressure is investigated. The submerged vessel is modelled as a cylindrical shell with two conical end caps. Complicating effects such as ring stiffeners, bulkheads and the fluid loading are taken into account. A harmonic radial force is transmitted from the propeller to the hull through the stern end cone and it is tonal at the blade passing frequency (rotational speed of the shaft multiplied by the number of blades). The actuators are attached at the inside of the prow end cone to form a circumferential array. Both Active Vibration Control (AVC) and Active Structural Acoustic Control (ASAC) are analysed and it is shown that the inertial actuators can significantly reduce the far field sound pressure.
Resumo:
Multi-objective Genetic Algorithms have become a popular choice to aid in optimising the size of the whole hybrid power train. Within these optimisation processes, other optimisation techniques for the control strategy are implemented. This optimisation within an optimisation requires many simulations to be run, so reducing the computational cost is highly desired. This paper presents an optimisation framework consisting of a series hybrid optimisation algorithm, in which a global search optimizes a submarine propulsion system using low-fidelity models and, in order to refine the results, a local search is used with high-fidelity models. The effectiveness of the Hybrid optimisation algorithm is demonstrated with the optimisation of a submarine propulsion system. © 2011 EPE Association - European Power Electr.