918 resultados para Structural systems
Resumo:
Many-electron systems confined to a quasi-one-dimensional geometry by a cylindrical distribution of positive charge have been investigated by density functional computations in the unrestricted local spin density approximation. Our investigations have been focused on the low-density regime, in which electrons are localized. The results reveal a wide variety of different charge and spin configurations, including linear and zig-zag chains, single-and double-strand helices, and twisted chains of dimers. The spin-spin coupling turns from weakly antiferromagnetic at relatively high density, to weakly ferromagnetic at the lowest densities considered in our computations. The stability of linear chains of localized charge has been investigated by analyzing the radial dependence of the self-consistent potential and by computing the dispersion relation of low-energy harmonic excitations.
Resumo:
Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.
Resumo:
The study covers theFishing capture technology innovation includes the catching of aquatic animal, using any kind of gear techniques, operated from a vessel. Utilization of fishing techniques varies, depending upon the type of fisheries, and can go from a basic and little hook connected to a line to huge and complex mid water trawls or seines operated by large fishing vessels.The size and autonomy of a fishing vessel is largely determined by its ability to handle, process and store fish in good condition on board, and thus these two characteristics have been greatly influenced by the introduction and utilization of ice and refrigeration machinery. Other technological developments especially hydraulic hauling machinery, fish finding electronics and synthetic twines have also had a major impact on the efficiency and profitability of fishing vessels.A wide variety of fishing gears and practices ranging from small-scale artisanal to advanced mechanised systems are used for fish capture in Kerala. Most important among these fishing gears are trawls, seines, lines, gillnets and entangling nets and traps The modern sector was introduced in 1953 at Neendakara, Shakthikulangara region under the initiative of Indo-Norwegian project (INP). The novel facilities introduced in fishing industry by Indo- Norwegian project accordingly are mechanically operated new boats with new fishing nets. Soon after mechanization, motorization programme gained momentum in Kerala especially in Alleppey, Ernakulam and Kollam districts.
Resumo:
We apply modern synchrotron-based structural techniques to the study of serine adsorbed on the pure andAumodified intrinsically chiral Cu{531} surface. XPS and NEXAFS data in combination with DFT show that on the pure surface both enantiomers adsorb in l4 geometries (with de-protonated b-OH groups) at low coverage and in l3 geometries at saturation coverage. Significantly larger enantiomeric differences are seen for the l4 geometries, which involve substrate bonds of three side groups of the chiral center, i.e. a three-point interaction. The l3 adsorption geometry, where only the carboxylate and amino groups form substrate bonds, leads to smaller but still significant enantiomeric differences, both in geometry and the decomposition behavior. When Cu{531} is modified by the deposition of 1 and 2ML Au the orientations of serine at saturation coverage are significantly different from those on the clean surface. In all cases, however, a l3 bond coordination is found at saturation involving different numbers of Au atoms, which leads to relatively small enantiomeric differences.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The electrical and microstructural properties of SnO2-based varistors with the addition of 0.025 and 0.050 mol% of Fe2O3 have been characterised. Electric field (E) versus current density (J) curves showed that the effect of Fe2O3 addition is to increase both the non-linear coefficient and the breakdown voltage. Variations in the potential barrier height were inferred from impedance spectroscopy (IS) analysis. Through transmission electron microscopy (TEM), the presence of precipitates of secondary phases was confirmed. Samples with precipitates displayed poor electrical properties. (c) 2004 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (I 10), (0 10), (10 1) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For, comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximate to (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.