935 resultados para Stretch Targets
Resumo:
Some cancer patients mount spontaneous T- and B-cell responses against their tumor cells. Autologous tumor reactive CD8 cytolytic T lymphocyte (CTL) and CD4 T-cell clones as well as antibodies from these patients have been used for the identification of genes encoding the target antigens. This knowledge opened the way for new approaches to the immunotherapy of cancer. In this review, we describe the characterization of the structure-function properties of the melanocyte/melanoma tumor antigen Melan-A/MART-1, the assessment of the T-cell repertoire available against this antigen in healthy individuals, and the analysis of naturally acquired and/or vaccine-induced CTL responses to this antigen in patients with metastatic melanoma.
Resumo:
L’apoptosi és un procés fisiològic que controla el nombre de cèl·lules en organismes superiors. L’apoptosi està estrictament regulada i s’ha vist que està implicada en la patogènesi d’algunes malalties del sistema nerviós. En aquest sentit, un excés de mort cel·lular contribueix a les malalties neurodegenerati- ves, mentre que, el seu dèficit és una de les raons del desenvolupament de tumors. El punt principal de regulació del procés apoptòtic és l’activació de les caspases, cisteïna-proteases que tenen especificitat pels residus aspàrtic. Les caspases es poden activar per dos mecanismes principals: (1) alliberament de citocrom C dels mitocondris alterats al citoplasma i (2) l’activació dels receptors de la membrana anomenats receptors de mort (DR, de l’anglès death receptor). Aquests receptors s’han caracteritzat extensament en el sistema immunitari, mentre que en el sistema nerviós les seves funcions són encara desconegudes. El present article se centra en el paper dels DR en la patogènesi de malalties neurodegeneratives i suggereix el seu potencial des del punt de vista terapèutic. També es descriuen diverses molècules intracel·lulars caracteritzades per la seva habilitat en la modulació dels DR. Entre elles, presentem dues noves proteïnes – lifeguard i FAIM – que s’expressen específicament al sistema nerviós.
Resumo:
Pneumocystis species are fungal parasites colonizing mammal lungs with strict host specificity. Pneumocystis jirovecii is the human-specific species and can turn into an opportunistic pathogen causing severe pneumonia in immunocompromised individuals. This disease is currently the second most frequent life-threatening invasive fungal infection worldwide. The most efficient drug, cotrimoxazole, presents serious side effects, and resistance to this drug is emerging. The search for new targets for the development of new drugs is thus of utmost importance. The recent release of the P. jirovecii genome sequence opens a new era for this task. It can now be carried out on the actual targets to be inhibited instead of on those of the relatively distant model Pneumocystis carinii, the species infecting rats. We focused on the folic acid biosynthesis pathway because (i) it is widely used for efficient therapeutic intervention, and (ii) it involves several enzymes that are essential for the pathogen and have no human counterparts. In this study, we report the identification of two such potential targets within the genome of P. jirovecii, the dihydrofolate synthase (dhfs) and the aminodeoxychorismate lyase (abz2). The function of these enzymes was demonstrated by the rescue of the null allele of the orthologous gene of Saccharomyces cerevisiae.
Resumo:
Interception requires precise estimation of time-to-contact (TTC) information. A long-standing view posits that all relevant information for extracting TTC is available in the angular variables, which result from the projection of distal objecs on to the retina. The diferent timing models rooted in this tradition have consequently relied on combining visual angle and its rate of expansion in diferent ways with tau being the most well-known solution for TTC...
Resumo:
MOTIVATION: The functional impact of small molecules is increasingly being assessed in different eukaryotic species through large-scale phenotypic screening initiatives. Identifying the targets of these molecules is crucial to mechanistically understand their function and uncover new therapeutically relevant modes of action. However, despite extensive work carried out in model organisms and human, it is still unclear to what extent one can use information obtained in one species to make predictions in other species. RESULTS: Here, for the first time, we explore and validate at a large scale the use of protein homology relationships to predict the targets of small molecules across different species. Our results show that exploiting target homology can significantly improve the predictions, especially for molecules experimentally tested in other species. Interestingly, when considering separately orthology and paralogy relationships, we observe that mapping small molecule interactions among orthologs improves prediction accuracy, while including paralogs does not improve and even sometimes worsens the prediction accuracy. Overall, our results provide a novel approach to integrate chemical screening results across multiple species and highlight the promises and remaining challenges of using protein homology for small molecule target identification. AVAILABILITY AND IMPLEMENTATION: Homology-based predictions can be tested on our website http://www.swisstargetprediction.ch. CONTACT: david.gfeller@unil.ch or vincent.zoete@isb-sib.ch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
1. The implementation of the Water Framework Directive requires EU member states to establish and harmonize ecological status class boundaries for biological quality elements. In this paper, we describe an approach for defining ecological class boundaries that delineates shifts in lake ecosystem functioning and, therefore, provides ecologically meaningful targets for water policy in Europe. 2. We collected an extensive data set of 810 lake-years from nine Central European countries, and we used phytoplankton chlorophyll a, a metric widely used to measure the impact of eutrophication in lakes. Our approach establishes chlorophyll a target values in relation to three significant ecological effects of eutrophication: the decline of aquatic macrophytes, the dominance of potentially harmful cyanobacteria and the major functional switch from a clear water to a turbid state. 3. Ranges of threshold chlorophyll a concentrations are given for the two most common lake types in lowland Central Europe: for moderately deep lakes (mean depth 3–15 m), the greatest ecological shifts occur in the range 10–12 lg L 1 chlorophyll a, and for shallow lakes (<3 m mean depth), in the range 21–23 lg L 1 chlorophyll a. 4. Synthesis and applications. Our study provides class boundaries for determining the ecological status of lakes, which have robust ecological consequences for lake functioning and which, therefore, provide strong and objective targets for sustainable water management in Europe. The results have been endorsed by all participant member states and adopted in the European Commission legislation, marking the first attempt in international water policy to move from physico-chemical quality standards to harmonized ecologically based quality targets.
Resumo:
During different forms of neurodegenerative diseases, including the retinal degeneration, several cell cycle proteins are expressed in the dying neurons from Drosophila to human revealing that these proteins are a hallmark of neuronal degeneration. This is true for animal models of Alzheimer's, and Parkinson's diseases, Amyotrophic Lateral Sclerosis and for Retinitis Pigmentosa as well as for acute injuries such as stroke and light damage. Longitudinal investigation and loss-of-function studies attest that cell cycle proteins participate to the process of cell death although with different impacts, depending on the disease. In the retina, inhibition of cell cycle protein action can result to massive protection. Nonetheless, the dissection of the molecular mechanisms of neuronal cell death is necessary to develop adapted therapeutic tools to efficiently protect photoreceptors as well as other neuron types.
Resumo:
Malignant mesothelioma is an incurable disease associated with asbestos exposure arising in the pleural cavity and less frequently in the peritoneal cavity. Platinum-based combination chemotherapy with pemetrexed is the established standard of care. Multimodality approaches including surgery and radiotherapy are being investigated. Increasing knowledge about the molecular characteristics of mesothelioma had led to the identification of novel potential targets for systemic therapy. Current evidence suggests pathways activated in response to merlin deficiency, including Pi3K/mTOR and the focal adhesion kinase, as well as immunotherapeutic approaches to be most promising. This review elaborates on the rationale behind targeted approaches that have been and are undergoing exploration in mesothelioma and summarizes available clinical results and ongoing efforts to improve the systemic therapy of mesothelioma.
Resumo:
BACKGROUND: Several subsets of non-small-cell lung cancer (NSCLC) are defined by molecular alterations acting as tumor drivers, some of them being currently therapeutically actionable. The rat sarcoma (RAS)-rapidly accelerated fibrosarcoma (RAF)-mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway constitutes an attractive potential target, as v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations occur in 2-4% of NSCLC adenocarcinoma. METHODS: Here, we review the latest clinical data on BRAF serine/threonine kinase inhibitors in NSCLC. RESULTS: Treatment of V600E BRAF-mutated NSCLC with BRAF inhibitor monotherapy demonstrated encouraging antitumor activity. Combination of BRAF and MEK inhibitors using dabrafenib and trametinib is under evaluation. Preliminary data suggest superior efficacy compared with BRAF inhibitor monotherapy. CONCLUSION: Targeting BRAF alterations represents a promising new therapeutic approach for a restricted subset of oncogene-addicted NSCLC. Prospect ive trials refining this strategy are ongoing. A next step will probably aim at combining BRAF inhibitors and immunotherapy or alternatively improve a multilevel mitogen-activated protein kinase (MAPK) pathway blockade by combining with ERK inhibitors.
Resumo:
BACKGROUND: Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP). Here, we aimed to better characterize IL-22 in the context of MS. METHODS: IL-22 and IL-22BP expressions were assessed by ELISA and qPCR in the following compartments of MS patients and control subjects: (1) the serum, (2) the cerebrospinal fluid, and (3) immune cells of peripheral blood. Identification of the IL-22 receptor subunit, IL-22R1, was performed by immunohistochemistry and immunofluorescence in human brain tissues and human primary astrocytes. The role of IL-22 on human primary astrocytes was evaluated using 7-AAD and annexin V, markers of cell viability and apoptosis, respectively. RESULTS: In a cohort of 141 MS patients and healthy control (HC) subjects, we found that serum levels of IL-22 were significantly higher in relapsing MS patients than in HC but also remitting and progressive MS patients. Monocytes and monocyte-derived dendritic cells contained an enhanced expression of mRNA coding for IL-22BP as compared to HC. Using immunohistochemistry and confocal microscopy, we found that IL-22 and its receptor were detected on astrocytes of brain tissues from both control subjects and MS patients, although in the latter, the expression was higher around blood vessels and in MS plaques. Cytometry-based functional assays revealed that addition of IL-22 improved the survival of human primary astrocytes. Furthermore, tumor necrosis factor α-treated astrocytes had a better long-term survival capacity upon IL-22 co-treatment. This protective effect of IL-22 seemed to be conferred, at least partially, by a decreased apoptosis. CONCLUSIONS: We show that (1) there is a dysregulation in the expression of IL-22 and its antagonist, IL-22BP, in MS patients, (2) IL-22 targets specifically astrocytes in the human brain, and (3) this cytokine confers an increased survival of the latter cells.
Resumo:
The HIV protease inhibitors (HIV-PIs) are among the most potent antiviral drugs for the HIV infection. Treatment of patients with HIV-PIs has been linked with development of side effects including dyslipidemia, lipodystrophy syndrome and cardiovascular complications. Moreover, these drugs have shown anti-tumoral activity in non-infected patients but little is known about the involved molecular mechanism for these off-target effects. Here we propose that the HIV-PI Nelfinavir could block a cellular protease thus causing the observed phenotypes. We firstly focus our attention on a cellular protein, DDI2, showing sequence and structural conservation with the HIV protease. We applied cellular and in vitro approaches to produce a correctly folded recombinant protein in order to investigate the presence of a proteolytic activity. Despite the fact that we could identify two techniques that can be applied to produce a folded recombinant DDI2, no proteolytic activity has been identified in the present study. However, we could observe that decreasing the DDI2 levels recapitulated some phenotype observed in presence of HIV-PIs, including the phosphorylation of the protein translation regulators eIF2a and eEF2. As an alternative approach to identify cellular targets for HIV-PIs, we applied a proteomic screening called Slice-SILAC. We focused our attention on the defective maturation of Lamin A, a member of the nuclear lamina, induced by the block of the cellular protease Zmpste24. We demonstrated that Nelfinavir induced accumulation of Prelamin A and nuclear shape defects and in addition caused presence of cytosolic DNA, probably due to TREX1 downregulation. We showed that these phenotypes correlated with activation of the AIM2 inflammasome and IL-lß release. These findings suggest that DDI2 and Zmpste24 are direct or indirect cellular targets for the HIV-PIs and indicate a possible role for these proteins in promoting off-target effects and anti¬tumoral activity observed in HIV-PI treated patients. -- Les inhibiteurs de la protéase du VIH (IP-VIH) sont parmi les médicaments antiviraux les plus efficaces pour l'infection par le VIH. Le traitement des patients avec les IP-VIH cause des effets secondaires comprenant la dyslipidémie, le syndrome de lipodystrophie et les complications cardio-vasculaires. De plus, ces médicaments ont montré une activité anti-tumorale chez les patients non infectés, toutefois le mécanisme moléculaire impliqué dans ces effets hors-cible reste inconnu. Nous proposons que l'IP-VIH Nelfinavir puisse bloquer une protéase cellulaire provoquant les phénotypes observés. De ce fait, nous avons concentré notre attention sur une protéine cellulaire, DDI2, qui possède une séquence et une structure proche de celle de la protéase du VIH. Nous avons appliqué des approches cellulaire et in vitro pour produire une protéine recombinante correctement repliée afin d'étudier son activité protéolytique. Malgré le fait que nous avons pu identifier deux techniques qui peuvent être appliquées pour produire une protéine DDI2 recombinante correctement repliée, aucune activité protéolytique n'a été identifiée dans la présente étude. De plus, nous avons pu observer que la réduction de DDI2 récapitule les phénotypes observé avec le IP-VIH, y compris les phosphorylations de eIF2a et eEF2, impliquées dans la régulation de la traduction protéique. Une approche alternative, appelée Slice-SILAC, a été utilisée afin d'identifier de nouvelles cibles cellulaires du Nelfinavir. Nous avons concentré notre attention sur la maturation défectueuse de la Lamine A, un membre de la lamine nucléaire, induite par l'inhibition de la protéase cellulaire Zmpste24. Nous avons démontré que le Nelfinavir induit une accumulation de Prélamine A déformant la membrane nucléaire et la présence d'ADN cytosolique, probablement en raison de la régulation négative de TREX1. Nous avons montré que ces phénotypes causent l'activation de l'inflammasome AIM2 et la sécrétion d'IL-lß. Ces résultats suggèrent que DDI2 et Zmpste24 sont des cibles cellulaires pour les IP-VIH et indiquent un possible rôle pour ces protéines dans l'apparition d'effets secondaires ainsi que dans l'activité anti-tumorale observée chez les patients traités avec les IP-VIH.
Resumo:
Background: Treatment of NSCLC has been revolutionized in recent years with the introduction of several targeted therapies for selected genetically altered subtypes of NSCLC. A better understanding of molecular characteristics of NSCLC, which features common drug targets, may identify new therapeutic options. Methods: Over 6,700 non-small cell lung cancer cases referred to Caris Life Sciences between 2009 and 2014. Diagnoses and history were collected from referring physicians. Specific testing was performed per physician request and included a combination of sequencing (Sanger, NGS or pyrosequencing), protein expression (IHC), gene amplification/rearrangement (CISH or FISH), and/or RNA fragment analysis. Results: Tumors profiles from patients with hormone receptor positive disease (HER2, ER, PR, or AR positive by IHC) (n=629), HER2 mutations (n=8) ALK rearrangements (n=55), ROS1 rearrangement (n=17), cMET amplification or mutation (n=126), and cKIT mutation (n=11) were included in this analysis and compared to the whole cohort. Tumors with ALK rearrangement overexpressed AR in 18% of cases, and 7% presented with concomitant KRAS mutation. Lower rates of PTEN loss, as assessed by IHC, were observed in ALK positive (20%), ROS1 positive (9%) and cKIT mutated tumors (25%) compared to the overall NSCLC population (58%). cMET was overexpressed in 66% of ROS1 translocated and 57% of HER2 mutated tumors. cKIT mutations were found co-existing with APC (20%) and EGFR (20%) mutations. Pathway analysis revealed that hormone receptor positive disease carried more mutations in the ERK pathway (32%) compared to 9% in the mTOR pathway. 25% of patients with HER2 mutations harbored a co-existing mutation in the mTOR pathway. Conclusions: Pathway profiling reveals that NSCLC tumors present more often than reported with several concomitant alterations affecting the ERK or AKT pathway. Additionally, they are also characterized by the expression of potential biological modifiers of the cell cycle like hormonal receptors, representing a rationale for dual inhibition strategies in selected patients. Further refining of the understanding of NSCLC biomarker profile will optimize research for new treatment strategies.