997 resultados para Strain gradient


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The broad aim of this study was to assess the contribution of job strain to mental health inequalities by (a) estimating the proportion of depression attributable to job strain (low control and high demand jobs), (b) assessing variation in attributable risk by occupational skill level, and (c) comparing numbers of job strain–attributable depression cases to numbers of compensated 'mental stress' claims. Methods Standard population attributable risk (PAR) methods were used to estimate the proportion of depression attributable to job strain. An adjusted Odds Ratio (OR) of 1.82 for job strain in relation to depression was obtained from a recently published meta-analysis and combined with exposure prevalence data from the Australian state of Victoria. Job strain exposure prevalence was determined from a 2003 population-based telephone survey of working Victorians (n = 1101, 66% response rate) using validated measures of job control (9 items, Cronbach's alpha = 0.80) and psychological demands (3 items, Cronbach's alpha = 0.66). Estimates of absolute numbers of prevalent cases of depression and successful stress-related workers' compensation claims were obtained from publicly available Australian government sources. Results Overall job strain-population attributable risk (PAR) for depression was 13.2% for males [95% CI 1.1, 28.1] and 17.2% [95% CI 1.5, 34.9] for females. There was a clear gradient of increasing PAR with decreasing occupational skill level. Estimation of job strain–attributable cases (21,437) versus "mental stress" compensation claims (696) suggest that claims statistics underestimate job strain–attributable depression by roughly 30-fold. Conclusion Job strain and associated depression risks represent a substantial, preventable, and inequitably distributed public health problem. The social patterning of job strain-attributable depression parallels the social patterning of mental illness, suggesting that job strain is an important contributor to mental health inequalities. The numbers of compensated 'mental stress' claims compared to job strain-attributable depression cases suggest that there is substantial under-recognition and under-compensation of job strain-attributable depression. Primary, secondary, and tertiary intervention efforts should be substantially expanded, with intervention priorities based on hazard and associated health outcome data as an essential complement to claims statistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study a gradient grain structure was produced by processing rod billets through three roll planetary milling (also known as PSW process). This kind of gradient structure is reported to provide an excellent combination of strength and ductility owing to an ultrafine-grained surface layer and a coarse-grained interior of the billet. Specifically, copper rod samples were subjected to up to six passes of PSW at room temperature. To study the evolution of the microstructure during the deformation, microhardness measurements and Electron Backscatter Diffraction (EBSD) analysis were performed after one, three and six passes. Additionally, the distributions of the equivalent stress during PSW and the equivalent strain after processing were studied by finite element analysis using the commercial software QFORM. The results showed the efficacy of PSW as a means of imparting a gradient ultrafine-grained structure to copper rods. A good correlation between the simulated equivalent strain distribution and the measured microhardness distribution was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a continuum theory for large strain anisotropic elastoplasticity based on a decomposition of the modified plastic velocity gradient into energetic and dissipative parts. The theory includes the Armstrong and Frederick hardening rule as well as multilayer models as special cases even for large strain anisotropic elastoplasticity. Texture evolution may also be modelled by the formulation, which allows for a meaningful interpretation of the terms of the dissipation equation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A non-local gradient-based damage formulation within a geometrically non-linear set- ting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy function which is additively composed by an isotropic neo-Hookean matrix and by an anisotropic fibre-reinforced material based on the model proposed by T. Gasser, R. Ogden, and G. Holzapfel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform density functional calculations to investigate the structure of the intermetallic alloy FeRh under epitaxial strain. Bulk FeRh exhibits a metamagnetic transition from a low-temperature antiferromagnetic (AFM) phase to a ferromagnetic phase at 350 K, and its strain dependence is of interest for tuning the transition temperature to the room-temperature operating conditions of typical memory devices. We find an unusually strong dependence of the structural energetics on the choice of exchange-correlation functional, with the usual local density approximation yielding the wrong ground-state structure, and generalized gradient (GGA) extensions being in better agreement with the bulk experimental structure. Using the GGA we show the existence of a metastable face-centered-cubic-like AFM structure that is reached from the ground-state body-centered-cubic-like AFM structure by following the epitaxial Bain path. We show that the behavior is well described using nonlinear elasticity theory, which captures the softening and eventual sign change of the orthorhombic shear modulus under compressive strain, consistent with this structural instability. Finally, we predict the existence of an additional unit-cell-doubling lattice instability, which should be observable at low temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenon of strain localisation is often observed in shear deformation of particulate materials, e.g., fault gouge. This phenomenon is usually attributed to special types of plastic behaviour of the material (e.g., strain softening or mismatch between dilatancy and pressure sensitivity or both). Observations of strain localisation in situ or in experiments are usually based on displacement measurements and subsequent computation of the displacement gradient. While in conventional continua the symmetric part of the displacement gradient is equal to the strain, it is no longer the case in the more realistic descriptions within the framework of generalised continua. In such models the rotations of the gouge particles are considered as independent degrees of freedom the values of which usually differ from the rotation of an infinitesimal volume element of the continuum, the latter being described for infinitesimal deformations by the non-symmetric part of the displacement gradient. As a model for gouge material we propose a continuum description for an assembly of spherical particles of equal radius in which the particle rotation is treated as an independent degree of freedom. Based on this model we consider simple shear deformations of the fault gouge. We show that there exist values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-layers of the fault, even in the absence of inelasticity. Inelastic effects are neglected in order to highlight the role of the independent rotations and the associated additional parameters. The localisation-like behaviour occurs if (a) the particle rotations on the boundary of the shear layer are constrained (this type of boundary condition does not exist in a standard continuum) and (b) the contact moment-or bending stiffness is much smaller than the product of the effective shear modulus of the granulate and the square of the width of the gouge layer. It should be noted however that the virtual work functional is positive definite over the range of physically meaningful parameters (here: contact stiffnesses, solid volume fraction and coordination number) so that strictly speaking we are not dealing with a material instability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain localisation is a widespread phenomenon often observed in shear and compressive loading of geomaterials, for example, the fault gouge. It is believed that the main mechanisms of strain localisation are strain softening and mismatch between dilatancy and pressure sensitivity. Observations show that gouge deformation is accompanied by considerable rotations of grains. In our previous work as a model for gouge material, we proposed a continuum description for an assembly of particles of equal radius in which the particle rotation is treated as an independent degree of freedom. We showed that there exist critical values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-surface layers of the fault, even in the absence of inelasticity. Here, we generalise the model to the case of finite deformations characteristic for the gouge deformation. We derive objective constitutive relationships relating the Jaumann rates of stress and moment stress to the relative strain and curvature rates, respectively. The model suggests that the pattern of localisation remains the same as in the linear case. However, the presence of the Jaumann terms leads to the emergence of non-zero normal stresses acting along and perpendicular to the shear layer (with zero hydrostatic pressure), and localised along the mid-line of the gouge; these stress components are absent in the linear model of simple shear. These additional normal stresses, albeit small, cause a change in the direction in which the maximal normal stresses act and in which en-echelon fracturing is formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin-orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to design and process-related factors, there are local variations in the microstructure and mechanical behaviour of cast components. This work establishes a Digital Image Correlation (DIC) based method for characterisation and investigation of the effects of such local variations on the behaviour of a high pressure, die cast (HPDC) aluminium alloy. Plastic behaviour is studied using gradient solidified samples and characterisation models for the parameters of the Hollomon equation are developed, based on microstructural refinement. Samples with controlled microstructural variations are produced and the observed DIC strain field is compared with Finite Element Method (FEM) simulation results. The results show that the DIC based method can be applied to characterise local mechanical behaviour with high accuracy. The microstructural variations are observed to cause a redistribution of strain during tensile loading. This redistribution of strain can be predicted in the FEM simulation by incorporating local mechanical behaviour using the developed characterization model. A homogeneous FEM simulation is unable to predict the observed behaviour. The results motivate the application of a previously proposed simulation strategy, which is able to predict and incorporate local variations in mechanical behaviour into FEM simulations already in the design process for cast components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two novelties are introduced: (i) a finite-strain semi-implicit integration algorithm compatible with current element technologies and (ii) the application to assumed-strain hexahedra. The Löwdin algo- rithm is adopted to obtain evolving frames applicable to finite strain anisotropy and a weighted least- squares algorithm is used to determine the mixed strain. Löwdin frames are very convenient to model anisotropic materials. Weighted least-squares circumvent the use of internal degrees-of-freedom. Het- erogeneity of element technologies introduce apparently incompatible constitutive requirements. Assumed-strain and enhanced strain elements can be either formulated in terms of the deformation gradient or the Green–Lagrange strain, many of the high-performance shell formulations are corotational and constitutive constraints (such as incompressibility, plane stress and zero normal stress in shells) also depend on specific element formulations. We propose a unified integration algorithm compatible with possibly all element technologies. To assess its validity, a least-squares based hexahedral element is implemented and tested in depth. Basic linear problems as well as 5 finite-strain examples are inspected for correctness and competitive accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most forms of tissue healing depend critically on revascularisation. In soft tissues and in vitro, mechanical stimuli have been shown to promote vessel-forming activity. However, in bone defects, increased interfragmentary motion impairs vascular regeneration. Because these effects seem contradictory, we aimed to determine whether a range of mechanical stimuli exists in which angiogenesis is favoured. A series of cyclic strain magnitudes were applied to a Matrigel-based “tube formation” assay and the total lengths of networks formed by human microvascular endothelial cells measured at 24 h. Network lengths were reduced at all strain levels, compared to unstretched controls. However, the levels of pro-angiogenic matrix metalloproteases-2 and -9 in the corresponding conditioned media were unchanged by strain, and vascular endothelial growth factor was uniformly elevated in stretched conditions. By repeating the assay with the addition of conditioned media from mesenchymal stem cells cultivated in similar conditions, paracrine stimuli were shown to increase network lengths, but not to alter the negative effect of cyclic stretching. Together, these results demonstrate that directly applied periodic strains can inhibit endothelial organisation in vitro, and suggest that this may be due to physical disruption rather than biochemical modulation. Most importantly, the results indicate that the straining of endothelial cells and their assembly into vascular-like structures must be studied simultaneously to adequately characterise the mechanical influence on vessel formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the effect of rib stiffeners on the free and forced vibration of a gradient coil in a Magnetic Resonance Imaging (MRI) scanner. Several reinforcement schemes are studied in this paper. One scheme utilizes the existing holes in the gradient coil structure (typically reserved for magnetic shims) to produce the reinforcement. Non-ferrous, non-magnetic carbon fibre rib stiffeners are employed to fill these holes in several ways to strengthen a gradient coil. Another scheme replaces the inner half of the gradient coil material with a grid of interconnected axial and circumferential rib stiffeners. It is found that the structural stiffness of the gradient coil increases substantially when the coil is reinforced by carbon fibre rib stiffeners. The reinforcement affects the noise and vibration response of the gradient coil structure in the following ways. It increases the frequency range of forced response of the gradient coil at low frequencies due to the increased resonant frequency of the fundamental mode of the coil. Secondly, it reduces the forced response amplitude of the coil structure (which is governed by the structural stiffness of the coil). Thirdly, it reduces the number of natural modes in the low and medium frequency range and therefore lessens the chance of the coil structure being excited resonantly by magnetic resonance signal acquisition sequences. It is shown that gradient coils modelled by solid finite element models have higher stiffness along the coil’s circumference and lower stiffness in the axial direction than those using shell finite element models.