970 resultados para Stone masonry
Resumo:
In today's era of advanced methods, it is interesting that a centuries-old Roman road-building concept can be the most attractive alternative available. The need for a less expensive road base construction method is very apparent, especially to the county engineer faced with maintaining quality lower traffic volume farm-to-market roads. The revival of the Macadam stone base is one possible solution. Des Moines County believed a Macadam road had excellent possibilities for their particular needs. They proposed a research project designed to eliminate some of the unknown factors of Macadam stone base construction. It is the intent of this research project to develop standardized design procedures and serve as an aid for others in constructing a Macadam base roadway. The Iowa Department of Transportation has published special provisions for the construction of Macadam stone bases that were adopted as the guideline specifications for the research project.
Resumo:
Reinforced Earth is a French development that has been used in the United States for approximately ten years. Virbro-Replacement, more commonly referred to as stone columns, is an outgrowth of deep densification of cohesionless soils originally developed in Germany. Reinforced Earth has applicability when wall height is greater than about twelve feet and deep seated foundation failure is not a concern. Stone columns are applicable when soft, cohesive subsoil conditions are encountered and bearing capacity and shearing resistance must be increased. The conditions in Sioux City on Wesley Way can be summarized as: (1) restricted right of way, (2) fill height in excess of 25 feet creating unstable conditions, (3) adjacent structures that could not be removed. After analyzing alternatives, it was decided that Reinforced Earth walls constructed on top of stone columns were the most practical approach.
Resumo:
Aquest és el llibre més complet que hi ha sobre la pedra de Santa Tecla i el llisós, dos materials procedents de Tarragona i molt utilitzats en època romana. Els autors, arqueòlegs i geòlegs, caracteritzen aquestes dues varietats i presenten el panorama de les seves aplicacions, i també donen pautes per identificar-les i diferenciar-les d’altres pedres que s’hi podrien confondre, com la “portasanta” o la pedra de Buixcarró.
Resumo:
This project included the following tasks: (1) Preparation of a questionnaire and survey of all 99 Iowa county engineers for input on current surfacing material practice; (2) County survey data analysis and selection of surfacing materials gradations to be used for test road construction; (3) Solicitation of county engineers and stone producers for project participation; (4) Field inspection and selection of the test road; (5) Construction of test road using varying material gradations from a single source; and (6) Field and laboratory testing and test road monitoring. The results of this research project indicate that crushed stone surfacing material graded on the fine side of Iowa Department of Transportation Class A surfacing specifications provides lower roughness and better rideability; better braking and handling characteristics; and less dust generation than the coarser gradations. It is believed that this material has sufficient fines available to act as a binder for the coarser material, which in turn promotes the formation of tight surface crust. This crust acts to provide a smooth riding surface, reduces dust generation, and improves vehicle braking and handling characteristics.
Resumo:
The generic concept of the artificial meteorite experiment STONE is to fix rock samples bearing microorganisms on the heat shield of a recoverable space capsule and to study their modifications during atmospheric re-entry. The STONE-5 experiment was performed mainly to answer astrobiological questions. The rock samples mounted on the heat shield were used (i) as a carrier for microorganisms and (ii) as internal control to verify whether physical conditions during atmospheric re-entry were comparable to those experienced by "real" meteorites. Samples of dolerite (an igneous rock), sandstone (a sedimentary rock), and gneiss impactite from Haughton Crater carrying endolithic cyanobacteria were fixed to the heat shield of the unmanned recoverable capsule FOTON-M2. Holes drilled on the back side of each rock sample were loaded with bacterial and fungal spores and with dried vegetative cryptoendoliths. The front of the gneissic sample was also soaked with cryptoendoliths. <p>The mineralogical differences between pre- and post-flight samples are detailed. Despite intense ablation resulting in deeply eroded samples, all rocks in part survived atmospheric re-entry. Temperatures attained during re-entry were high enough to melt dolerite, silica, and the gneiss impactite sample. The formation of fusion crusts in STONE-5 was a real novelty and strengthens the link with real meteorites. The exposed part of the dolerite is covered by a fusion crust consisting of silicate glass formed from the rock sample with an admixture of holder material (silica). Compositionally, the fusion crust varies from silica-rich areas (undissolved silica fibres of the holder material) to areas whose composition is "basaltic". Likewise, the fusion crust on the exposed gneiss surface was formed from gneiss with an admixture of holder material. The corresponding composition of the fusion crust varies from silica-rich areas to areas with "gneiss" composition (main component potassium-rich feldspar). The sandstone sample was retrieved intact and did not develop a fusion crust. Thermal decomposition of the calcite matrix followed by disintegration and liberation of the silicate grains prevented the formation of a melt.</p> <p>Furthermore, the non-exposed surface of all samples experienced strong thermal alterations. Hot gases released during ablation pervaded the empty space between sample and sample holder leading to intense local heating. The intense heating below the protective sample holder led to surface melting of the dolerite rock and to the formation of calcium-silicate rims on quartz grains in the sandstone sample. (c) 2008 Elsevier Ltd. All rights reserved.</p>
Resumo:
Aquesta obra recull els resums de les comunicacions orals i pòsters que es van presentar durant el IX Congrés Internacional de l’Association for the Study of Marbles and Other Stones in Antiquity (ASMOSIA), organitzat per l’ICAC en el marc del programa de recerca HAR2008-04600/HIST, amb el suport del programa d’Ajuts ARCS 2008 (referència expedient IR036826) de la Generalitat de Catalunya i del Ministeri de Ciència i Innovació (Accions Complementàries HAR2008-03181-E/HIST), i celebrat a Tarragona entre el 8 i el 13 de juny del 2009.
Resumo:
BACKGROUND: Pancreatic stone protein (PSP) has been identified as a promising sepsis marker in adults, children and neonates. However, data on population-based reference values are lacking. This study aimed to establish age-specific reference values for PSP. METHODS: PSP was determined using a specific ELISA. PSP serum concentrations were determined in 372 healthy subjects including 217 neonates, 94 infants and children up to 16 years, and 61 adults. The adjacent categories method was used to determine which age categories had significantly different PSP concentrations. RESULTS: PSP circulating levels were not gender-dependent and ranged from 1.0 to 99.4 ng/ml with a median of 9.2 ng/ml. PSP increased significantly between the age categories, from a median of 2.6 ng/ml in very preterm newborns, to 6.3 ng/ml in term newborns, to 16.1 ng/ml in older children (p < 0.001). PSP levels were higher on postnatal day three compared to levels measured immediately post delivery (p < 0.001). Paired umbilical artery and umbilical vein samples were strongly correlated (p < 0.001). Simultaneously obtained capillary heel-prick versus venous samples showed a good level of agreement for PSP (Rho 0.89, bias 19 %). CONCLUSIONS: This study provides age-specific normal values that may be used to define cut-offs for future trials on PSP. We demonstrate an age-dependent increase of PSP from birth to childhood.
Resumo:
OBJECTIVES: Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across studies. The objective of this research is to develop a cutpoint conversion system that standardizes minutes of MVPA for six different sets of published cutpoints. DESIGN: Secondary data analysis. METHODS: Data from the International Children's Accelerometer Database (ICAD; Spring 2014) consisting of 43,112 Actigraph accelerometer data files from 21 worldwide studies (children 3-18 years, 61.5% female) were used to develop prediction equations for six sets of published cutpoints. Linear and non-linear modeling, using a leave one out cross-validation technique, was employed to develop equations to convert MVPA from one set of cutpoints into another. Bland Altman plots illustrate the agreement between actual MVPA and predicted MVPA values. RESULTS: Across the total sample, mean MVPA ranged from 29.7MVPAmind(-1) (Puyau) to 126.1MVPAmind(-1) (Freedson 3 METs). Across conversion equations, median absolute percent error was 12.6% (range: 1.3 to 30.1) and the proportion of variance explained ranged from 66.7% to 99.8%. Mean difference for the best performing prediction equation (VC from EV) was -0.110mind(-1) (limits of agreement (LOA), -2.623 to 2.402). The mean difference for the worst performing prediction equation (FR3 from PY) was 34.76mind(-1) (LOA, -60.392 to 129.910). CONCLUSIONS: For six different sets of published cutpoints, the use of this equating system can assist individuals attempting to synthesize the growing body of literature on Actigraph, accelerometry-derived MVPA.
Resumo:
One of the most relevant properties of composite materials to be considered is stiffness. Fiberglass has been used traditionally as a fibrous reinforcing element when stiff materials are required. However, natural fibers are been exploited as replacements for synthetic fibers to satisfy environmental concerns. Among the different natural fibers, wood fibers show the combination of relatively high aspect ratio, good specific stiffness and strength, low density, low cost, and less variability than other natural fibers of such those from annual crops. In this work, composites from polypropylene and stone groundwood fibers from softwood were prepared and mechanically characterized under tensile loads. The Young’s moduli of the ensuing composites were analyzed and their micromechanics aspects evaluated. The reinforcing effect of stone groundwood fibers was compared to that of conventional reinforcement such fiberglass. The Halpin-Tsai model with the modification proposed by Tsai-Pagano accounted fairly for the behavior of PP composites reinforced with stone groundwood fibers. It was also demonstrated that the aspect ratio of the reinforcement plays a role in the Young’s modulus of injection molded specimens
Resumo:
This paper deals with the product design, engineering, and material selection intended for the manufacturing of an eco-friendly chair. The final product is expected to combine design attributes with technical and legal feasibility with the implementation of new bio-based materials. Considering the industrial design, a range of objectives and trends were determined after setting the market requirements, and the final concept was proposed and modeled. The product geometry, production technology, and legal specifications were the input data for product engineering. The material selection was based on the technical requirements. Polypropylene (PP) composite materials based on coupled-fiberglass, sized-fiberglass, and coupled-stone ground wood reinforcements were prepared and characterized. Final formulations based on these PP composites are proposed and justified