894 resultados para Stiff, Computação de (Equações diferenciais)
Resumo:
A relação entre a epidemiologia, a modelação matemática e as ferramentas computacionais permite construir e testar teorias sobre o desenvolvimento e combate de uma doença. Esta tese tem como motivação o estudo de modelos epidemiológicos aplicados a doenças infeciosas numa perspetiva de Controlo Ótimo, dando particular relevância ao Dengue. Sendo uma doença tropical e subtropical transmitida por mosquitos, afecta cerca de 100 milhões de pessoas por ano, e é considerada pela Organização Mundial de Saúde como uma grande preocupação para a saúde pública. Os modelos matemáticos desenvolvidos e testados neste trabalho, baseiam-se em equações diferenciais ordinárias que descrevem a dinâmica subjacente à doença nomeadamente a interação entre humanos e mosquitos. É feito um estudo analítico dos mesmos relativamente aos pontos de equilíbrio, sua estabilidade e número básico de reprodução. A propagação do Dengue pode ser atenuada através de medidas de controlo do vetor transmissor, tais como o uso de inseticidas específicos e campanhas educacionais. Como o desenvolvimento de uma potencial vacina tem sido uma aposta mundial recente, são propostos modelos baseados na simulação de um hipotético processo de vacinação numa população. Tendo por base a teoria de Controlo Ótimo, são analisadas as estratégias ótimas para o uso destes controlos e respetivas repercussões na redução/erradicação da doença aquando de um surto na população, considerando uma abordagem bioeconómica. Os problemas formulados são resolvidos numericamente usando métodos diretos e indiretos. Os primeiros discretizam o problema reformulando-o num problema de optimização não linear. Os métodos indiretos usam o Princípio do Máximo de Pontryagin como condição necessária para encontrar a curva ótima para o respetivo controlo. Nestas duas estratégias utilizam-se vários pacotes de software numérico. Ao longo deste trabalho, houve sempre um compromisso entre o realismo dos modelos epidemiológicos e a sua tratabilidade em termos matemáticos.
Resumo:
Esta dissertação estuda em detalhe três problemas elípticos: (I) uma classe de equações que envolve o operador Laplaciano, um termo singular e nãolinearidade com o exponente crítico de Sobolev, (II) uma classe de equações com singularidade dupla, o expoente crítico de Hardy-Sobolev e um termo côncavo e (III) uma classe de equações em forma divergente, que envolve um termo singular, um operador do tipo Leray-Lions, e uma função definida nos espaços de Lorentz. As não-linearidades consideradas nos problemas (I) e (II), apresentam dificuldades adicionais, tais como uma singularidade forte no ponto zero (de modo que um "blow-up" pode ocorrer) e a falta de compacidade, devido à presença do exponente crítico de Sobolev (problema (I)) e Hardy-Sobolev (problema (II)). Pela singularidade existente no problema (III), a definição padrão de solução fraca pode não fazer sentido, por isso, é introduzida uma noção especial de solução fraca em subconjuntos abertos do domínio. Métodos variacionais e técnicas da Teoria de Pontos Críticos são usados para provar a existência de soluções nos dois primeiros problemas. No problema (I), são usadas uma combinação adequada de técnicas de Nehari, o princípio variacional de Ekeland, métodos de minimax, um argumento de translação e estimativas integrais do nível de energia. Neste caso, demonstramos a existência de (pelo menos) quatro soluções não triviais onde pelo menos uma delas muda de sinal. No problema (II), usando o método de concentração de compacidade e o teorema de passagem de montanha, demostramos a existência de pelo menos duas soluções positivas e pelo menos um par de soluções com mudança de sinal. A abordagem do problema (III) combina um resultado de surjectividade para operadores monótonos, coercivos e radialmente contínuos com propriedades especiais do operador de tipo Leray- Lions. Demonstramos assim a existência de pelo menos, uma solução no espaço de Lorentz e obtemos uma estimativa para esta solução.
Resumo:
Por parte da indústria de estampagem tem-se verificado um interesse crescente em simulações numéricas de processos de conformação de chapa, incluindo também métodos de engenharia inversa. Este facto ocorre principalmente porque as técnicas de tentativa-erro, muito usadas no passado, não são mais competitivas a nível económico. O uso de códigos de simulação é, atualmente, uma prática corrente em ambiente industrial, pois os resultados tipicamente obtidos através de códigos com base no Método dos Elementos Finitos (MEF) são bem aceites pelas comunidades industriais e científicas Na tentativa de obter campos de tensão e de deformação precisos, uma análise eficiente com o MEF necessita de dados de entrada corretos, como geometrias, malhas, leis de comportamento não-lineares, carregamentos, leis de atrito, etc.. Com o objetivo de ultrapassar estas dificuldades podem ser considerados os problemas inversos. No trabalho apresentado, os seguintes problemas inversos, em Mecânica computacional, são apresentados e analisados: (i) problemas de identificação de parâmetros, que se referem à determinação de parâmetros de entrada que serão posteriormente usados em modelos constitutivos nas simulações numéricas e (ii) problemas de definição geométrica inicial de chapas e ferramentas, nos quais o objetivo é determinar a forma inicial de uma chapa ou de uma ferramenta tendo em vista a obtenção de uma determinada geometria após um processo de conformação. São introduzidas e implementadas novas estratégias de otimização, as quais conduzem a parâmetros de modelos constitutivos mais precisos. O objetivo destas estratégias é tirar vantagem das potencialidades de cada algoritmo e melhorar a eficiência geral dos métodos clássicos de otimização, os quais são baseados em processos de apenas um estágio. Algoritmos determinísticos, algoritmos inspirados em processos evolucionários ou mesmo a combinação destes dois são usados nas estratégias propostas. Estratégias de cascata, paralelas e híbridas são apresentadas em detalhe, sendo que as estratégias híbridas consistem na combinação de estratégias em cascata e paralelas. São apresentados e analisados dois métodos distintos para a avaliação da função objetivo em processos de identificação de parâmetros. Os métodos considerados são uma análise com um ponto único ou uma análise com elementos finitos. A avaliação com base num único ponto caracteriza uma quantidade infinitesimal de material sujeito a uma determinada história de deformação. Por outro lado, na análise através de elementos finitos, o modelo constitutivo é implementado e considerado para cada ponto de integração. Problemas inversos são apresentados e descritos, como por exemplo, a definição geométrica de chapas e ferramentas. Considerando o caso da otimização da forma inicial de uma chapa metálica a definição da forma inicial de uma chapa para a conformação de um elemento de cárter é considerado como problema em estudo. Ainda neste âmbito, um estudo sobre a influência da definição geométrica inicial da chapa no processo de otimização é efetuado. Este estudo é realizado considerando a formulação de NURBS na definição da face superior da chapa metálica, face cuja geometria será alterada durante o processo de conformação plástica. No caso dos processos de otimização de ferramentas, um processo de forjamento a dois estágios é apresentado. Com o objetivo de obter um cilindro perfeito após o forjamento, dois métodos distintos são considerados. No primeiro, a forma inicial do cilindro é otimizada e no outro a forma da ferramenta do primeiro estágio de conformação é otimizada. Para parametrizar a superfície livre do cilindro são utilizados diferentes métodos. Para a definição da ferramenta são também utilizados diferentes parametrizações. As estratégias de otimização propostas neste trabalho resolvem eficientemente problemas de otimização para a indústria de conformação metálica.
Resumo:
Os compostos orgânicos voláteis constituem uma fonte vulgar de contaminação da água subterrânea, a qual pode ser eliminada pela tecnologia do arrastamento por ar (air stripping) em colunas com enchimento desordenado e utilizando fluxos das fases em contra-corrente. Propõe-se neste trabalho uma nova metodologia de dimensionamento destas colunas, para qualquer tipo de enchimento e de contaminante, onde não há necessidade de se arbitrar nenhum diâmetro, onde se evita o recurso a ábacos experimentais e onde o regime hidráulico conveniente é seleccionado à partida. O procedimento proposto foi algoritmizado e convertido num programa em linguagem C++. Para verificar e testar não só o dimensionamento mas também o comportamento teórico estacionário e dinâmico construiu-se de raiz uma coluna experimental. Seleccionou-se como contaminante uma solução de clorofórmio em água destilada. A experimentação permite, ainda, corrigir o coeficiente de transferência de massa global teórico estimado pelas correlações de Onda e que depende de inúmeros parâmetros nem sempre controláveis experimentalmente. Apresenta-se, em seguida, um modelo original de simulação dinâmica do comportamento da coluna e que é constituído por um sistema de equações diferenciais não lineares (parâmetros distribuidos). No entanto, se os débitos forem arbitrados como constantes, o sistema passa a ser linear apesar de não possuir solução analítica evidente (p.e. por transformações integrais). A discretização por diferenças finitas permitiu superar estas dificuldades. Existe uma notável concordância entre os valores experimentais e os previstos no modelo.
Resumo:
A Matemática e as Ciências Farmacêuticas encontram-se relacionadas desde há muito, no entanto, foi a partir do séc. XVII, período de notável agitação cultural e científico que os métodos experimentais foram sustentados com cálculos matemáticos. Esta ciência e as técnicas de modelagem matemática tornaram-se numa ferramenta amplamente utilizada, de tal modo, que nos dias de hoje são consideradas como fundamentais na generalidade das profissões e em especial nas Ciências Farmacêuticas. Contudo, para muitos ainda não é vista como fundamental e essencial para a formação de futuros farmacêuticos. Deste modo, pretende-se demonstrar como a Matemática e as técnicas de modelagem se tornaram ao longo dos anos nesta poderosa ferramenta. Quer pelos instrumentos, quer pelas competências que nos proporcionam. Pretende-se também, com recurso aos conteúdos programáticos desta unidade curricular, avaliar se os conhecimentos, sistemas de avaliação e distribuição da carga horária são efetuados de forma homogénea pelas diferentes instituições portuguesas, públicas ou privadas que lecionam o Mestrado Integrado em Ciências Farmacêuticas. Verificou-se que a Matemática é uma ciência plena de capacidades e recursos e que estabelece uma relação interdisciplinar com as Ciências Farmacêuticas. Quer pela componente utilitária, quer pela componente formativa que proporciona. A análise dos conteúdos programáticos demonstra que apesar de serem transversais, as Universidades que não lecionam Sistemas de Equações Lineares e Equações diferenciais deveriam faze-lo e também realizarem um melhor controlo da carga horária por temática.
Resumo:
Neste trabalho são desenvolvidos métodos numéricos para inversão da transformada de Laplace, fazendo-se uso de polinômios trigonométricos e de Laguerre. Sua utilização é ilustrada num problema de fronteira móvel da área de engenharia nuclear, através do algoritmo computacional ALG-619. Uma revisão dos aspectos analíticos básicos da transformada de Laplace e sua utilização na resolução de equações diferenciais parciais é apresentada de maneira suscinta.
Resumo:
Fundamentalmente, o presente trabalho faz uma análise elástica linear de pontes ou vigas curvas assimétricas de seção transversal aberta e de parede fina, com propriedades físicas, geométricas e raio de curvatura constantes ao longo do eixo baricêntrico. Para tanto, utilizaram-se as equações diferenciais de VLASOV considerando o acoplamento entre as deformações nas direções vertical, transversal, axial de torcão nal. Na solução do sistema de quatro equações com derivadas parciais foi utilizado um apropriado método numérico de integração (Diferenças Finitas Centrais). A análise divide-se, basicamente, em dois tipos: análise DINÂMICA e ESTATICA. Ambas são utilizadas também na determinação do coeficiente de impacto (C.M.D.). A primeira refere-se tanto na determinação das características dinâmicas básicas (frequências naturais e respectivos modos de vibração), como também na determinação da resposta dinâmica da viga, em tensões e deformações, para cargas móveis arbitrárias. Vigas com qualquer combinação das condições de contorno, incluindo bordos rotulados e engastados nas três direções de flexão e na torção, são consideradas. 0s resultados da análise teórica, obtidos pela aplicação de programas computacionais implementados em microcomputador (análise estática) e no computador B-6700 (análise dinâmica), são comparados tanto com os da bibliografia técnica como também com resultados experimentais, apresentando boa correlação.
Resumo:
Apresentar um modelo para simular um sistema de armazenamento de calor no solo em estufas para plasticultura é o objetivo do presente trabalho. O sistema consiste num feixe de tubos enterrados no solo. A convecção forçada de ar no seu interior realiza a troca térmica necessária para manter as estufas sob faixas desejadas de temperatura. O objetivo do modelo é investigar os efeitos no calor armazenado e a influência das variáveis, tais como diâmetro, comprimento, espaçamento entre os tubos e a velocidade de ar no canal provocam no sistema. O solo é tratado como um meio difusivo e avalia-se a contribuição do termo de condensação e evaporação da água contida no ar em escoamento nos tubos. A equação da energia é resolvida para o solo e para o ar. Os tubos de seção transversal circular são modelados como tubos de seção transversal quadrada com o objetivo de que as simulações possam ser processadas em coordenadas cartesianas. O programa resolve situações tridimensionais, transientes e emprega o Método dos Volumes Finitos para integrar as equações diferenciais governantes. O modelo original é baseado no modelo de Gauthier et al., 1997, tendo sido os resultados do mesmo foram usados para a validação do presente estudo. Um circuito de água quente é também projetado e apresentado para o aquecimento das estufas. A água circula através de mangueiras sobre o solo e é aquecida por um sistema de queimadores a gás liqüefeito de petróleo ou óleo combustível, transferindo assim calor para o interior da mesma. O projeto de aquecimento foi realizado através de um programa de parceria entre a Ufrgs, Sebrae, Fapergs e a Agropecuária Clarice.
Resumo:
O objetivo deste trabalho é a obtenção de uma técnica para a modelagem otimizada de corpos submetidos a fluxos de alta velocidade, como aerofólios em escoamentos transônicos e outras geometrias aerodinâmicas. A técnica é desenvolvida através de expansões em séries de Fourier para um conjunto de equações diferenciais com interrelação com as condições de contorno, sendo uma equação para a parte superior e outra para a parte inferior do aerofólio. O método de integração temporal empregado baseia-se no esquema explícito de Runge-Kutta de 5 estágios para as equações da quantidade de movimento e na relação de estado para a pressão. Para a aproximação espacial adota-se um esquema em volumes finitos no arranjo co-localizado em diferenças centrais. Utiliza-se dissipação artificial para amortecer as frequências de alta ordem do erro na solução das equações linearizadas. A obra apresenta a solução de escoamentos bi e tridimensionais de fluidos compressíveis transônicos em torno de perfis aerodinâmicos. Os testes num´ericos são realizados para as geometrias do NACA 0012 e 0009 e asas tridimensionais usando as equações de Euler, para número de Mach igual a 0.8 e ® = 0o. Os resultados encontrados comparam favoravelmente com os dados experimentais e numéricos disponíveis na literatura.
Resumo:
A ciência moderna apresentou significativo avanço a partir do desenvolvimento da análise diferencial. A transformação de equações diferenciais de alta ordem em sistemas de equações algébricas foi possível através do desenvolvimento de métodos numéricos, constituindo este, outro grande avanço. Dentro desses pode-se destacar os métodos de diferenças finitas, dos elementos finitos, dos elementos discretos e mais recentemente, os elementos de contorno. Neste trabalho, faz-se uma contribuição ao desenvolvimento do Método dos Elementos Discretos para aplicações na Mecânica do Contínuo, na Mecânica da Fratura, assim como na determinação do dano em elementos estruturais submetidos a cargas. Neste método, a discretização espacial no modelo se realiza mediante um conjunto de massas ligadas entre se por forças materializadas como um arranjo de barras de treliça com rigidez equivalente ao contínuo que se quer representar, e mediante um esquema de integração explícita, se realiza a integração das equações de movimento no tempo. Verifica-se a validade e a capacidade do método em predizer o efeito de tamanho em elementos de concreto e concreto armado, obtendo-se uma excelente correlação com ensaios encontrados na literatura técnica, além de importantes conclusões a respeito da aplicação de cargas estáticas e dinâmicas, tanto em padrões de fissuração ou ruptura, quanto aos valores limites de resistência dos materiais ou cargas aplicadas, dando-se importância na geração aleatória das propriedades dos materiais mediante o uso do Método de Representação Espectral.
Resumo:
Este trabalho visa desenvolver um modelo físico e matemático geral para os processos de extração sólido-líquido em fluxos contracorrente cruzados (CCC) que são utilizados na indústria de alimentos. Levam-se em consideração os processos principais (o transporte de massa entre as fases, difusão e convecção) envolvidos por todo o campo de extração, com uma abordagem bidimensional evolutiva, incluindo as zonas de carregamento, drenagem e as bandejas acumuladoras. O modelo matemático é formado por equações diferenciais parciais que determinam a alteração das concentrações nas fases poro e “bulk” em todo o campo de extração e equações diferenciais ordinárias (que refletem as evoluções das concentrações médias nas bandejas). As condições de contorno estabelecem as ligações entre os fluxos CCC da micela e matéria-prima e consideram, também, a influência das zonas de drenagem e carregamento. O algoritmo de resolução utiliza o método de linhas que transforma as equações diferenciais parciais em equações diferenciais ordinárias, que são resolvidas pelo método de Runge-Kutta. Na etapa de validação do modelo foram estabelecidos os parâmetros da malha e o passo de integração, a verificação do código com a lei de conservação da espécie e um único estado estacionário. Também foram realizadas a comparação com os dados experimentais coletados no extrator real e com o método de estágios ideais, a análise da influência de propriedades da matéria-prima nas características principais do modelo, e estabelecidos os dados iniciais do regime básico (regime de operação) Foram realizadas pesquisas numéricas para determinar: os regimes estacionário e transiente, a variação da constante de equilíbrio entre as fases, a variação do número de seções, a alteração da vazão de matéria-prima nas características de um extrator industrial e, também foram realizadas as simulações comparativas para diferentes tipos de matéria-prima (flocos laminados e flocos expandidos) usados amplamente na indústria. Além dessas pesquisas, o modelo também permite simular diferentes tipos de solventes. O estudo da capacidade de produção do extrator revelou que é necessário ter cuidado com o aumento da vazão da matéria-prima, pois um pequeno aumento desta pode causar grandes perdas de óleo tornando alto o custo da produção. Mesmo que ainda seja necessário abastecer o modelo com mais dados experimentais, principalmente da matéria-prima, os resultados obtidos estão em concordância com os fenômenos físico-químicos envolvidos no processo, com a lei de conservação de espécies químicas e com os resultados experimentais.
Resumo:
Nesta dissertação apresentamos e desenvolvemos o Método de Perron, fazendo uma aplicação ao ploblema de Dirichlet para a equação das superfícies de curvatura média constante em R3. Apresentamos também uma extensão deste método dentro de EDP's e, por fim, obtemos uma extensão geométrica que se aplica a superfícies ao invés de gráficos. Comentamos a aplicação deste método geométrico á existência de superfícies mínimas tendo como bordo duas curvas convexas em planos paralelos do R3.
Resumo:
As técnicas utilizadas em sistemas de reconhecimento automático de locutor (RAL) objetivam identificar uma pessoa através de sua voz, utilizando recursos computacionais. Isso é feito a partir de um modelamento para o processo de produção da voz. A modelagem detalhada desse processo deve levar em consideração a variação temporal da forma do trato vocal, as ressonâncias associadas à sua fisiologia, perdas devidas ao atrito viscoso nas paredes internas do trato vocal, suavidade dessas paredes internas, radiação do som nos lábios, acoplamento nasal, flexibilidade associada à vibração das cordas vocais, etc. Alguns desses fatores são modelados por um sistema que combina uma fonte de excitação periódica e outra de ruído branco, aplicadas a um filtro digital variante no tempo. Entretanto, outros fatores são desconsiderados nesse modelamento, pela simples dificuldade ou até impossibilidade de descrevê-los em termos de combinações de sinais, filtros digitais, ou equações diferenciais. Por outro lado, a Teoria dos Sistemas Dinâmicos Não-Lineares ou Teoria do Caos oferece técnicas para a análise de sinais onde não se sabe, ou não é conhecido, o modelo detalhado do mecanismo de produção desses sinais. A análise através dessa teoria procura avaliar a dinâmica do sinal e, assumindo-se que tais amostras provêm de um sistema dinâmico não-linear, medidas qualitativas podem ser obtidas desse sistema. Essas medidas não fornecem informações precisas quanto ao modelamento do processo de produção do sinal avaliado, isto é, o modelo analítico é ainda inacessível. Entretanto, pode-se aferir a respeito de suaO problema analisado ao longo deste trabalho trata da busca de novos métodos para extrair informações úteis a respeito do locutor que produziu um determinado sinal de voz. Com isso, espera-se conceber sistemas que realizem a tarefa de reconhecer um pessoa automaticamente através de sua voz de forma mais exata, segura e robusta, contribuindo para o surgimento de sistemas de RAL com aplicação prática. Para isso, este trabalho propõe a utilização de novas ferramentas, baseadas na Teoria dos Sistemas Dinâmicos Não-Lineares, para melhorar a caracterização de uma pessoa através de sua voz. Assim, o mecanismo de produção do sinal de voz é analisado sob outro ponto de vista, como sendo o produto de um sistema dinâmico que evolui em um espaço de fases apropriado. Primeiramente, a possibilidade de utilização dessas técnicas em sinais de voz é verificada. A seguir, demonstra-se como as técnicas para estimação de invariantes dinâmicas não-lineares podem ser adaptadas para que possam ser utilizadas em sistemas de RAL. Por fim, adaptações e automatizações algorítmicas para extração de invariantes dinâmicas são sugeridas para o tratamento de sinais de voz. A comprovação da eficácia dessa metodologia se deu pela realização de testes comparativos de exatidão que, de forma estatisticamente significativa, mostraram o benefício advindo das modificações sugeridas. A melhora obtida com o acréscimo de invariantes dinâmicas da forma proposta no sistema de RAL utilizado nos testes resultou na diminuição da taxa de erro igual (EER) em 17,65%, acarretando um intrínseco aumento de processamento. Para sinais de voz contaminados com ruído, o benefício atingido com o sistema proposto foi verificado para relações sinal ruído (SNRs) maiores que aproximadamente 5 dB. O avanço científico potencial advindo dos resultados alcançados com este trabalho não se limita às invariantes dinâmicas utilizadas, e nem mesmo à caracterização de locutores. A comprovação da possibilidade de utilização de técnicas da Teoria do Caos em sinais de voz permitirá expandir os conceitos utilizados em qualquer sistema que processe digitalmente sinais de voz. O avanço das técnicas de Sistemas Dinâmicos Não-Lineares, como a concepção de invariantes dinâmicas mais representativas e robustas, implicará também no avanço dos sistemas que utilizarem esse novo conceito para tratamento de sinais vocais.
Resumo:
A produção de soja é uma das principais atividades econômicas na Região Noroeste do Estado do Rio Grande do Sul. As perdas de produto em condições de comercialização ocasionadas nas atividades de secagem e armazenamento são significativas, justificando a pesquisa e aprimoramento destes processos. Nesta tese foram pesquisados dois problemas: 1. Modelamento matemático dos processos de secagem, utilizando parâmetros conhecidos de soja e 2. Modelamento matemático do problema de aeração para o cálculo da distribuição da pressão e da velocidade do ar na massa de grãos em unidades de armazenamento de soja. No problema de secagem foi desenvolvido um sistema composto de quatro equações diferenciais parciais hiperbólicas acopladas não-lineares, que descreve o comportamento da temperatura e do teor de umidade do ar e dos grãos em função do tempo. Para resolver o sistema foram utilizados os métodos das diferenças finitas (p. ex., métodos de MacCormack e Crank- Nicolson.) e o método dos volumes finitos. A análise dos resultados permitiu recomendar o método mais adequado para cada tipo do problema. Para determinação da intensidade do fluxo de massa e de calor foram utilizados os dados experimentais de camada fina obtidos da literatura e complementados com dados experimentais desta tese. Foi desenvolvido um equipamento para obtenção das curvas de secagem de grãos em secador de leito fixo, a fim de identificar o modelo para secagem em camada espessa. A comparação entre os resultados experimentais e das simulações numéricas mostrou que o modelo descreve razoavelmente a dinâmica de secagem No problema de aeração foi desenvolvido um modelo matemático que descreve o escoamento do ar em sistemas de armazenamento de grãos, baseado em relações experimentais entre velocidade e gradiente de pressão. Para resolver o problema de aeração foi utilizado o método dos elementos finitos e desenvolvido um programa computacional. Um teste realizado com o programa mostrou que os resultados da solução numérica convergem para uma solução analítica conhecida. As simulações realizadas mostraram que o programa computacional pode ser usado como instrumento auxiliar para o projeto de silos, possibilitando o cálculo e a visualização gráfica da distribuição das pressões e das linhas de corrente em diferentes seções do armazém.