166 resultados para Stevia rebaudiana (Bertoni) Bertoni
Resumo:
Background: Small Ruminant Lentiviruses (SRLV) are widespread in Canadian sheep and goats and represent an important health issue in these animals. There is however no data about the genetic diversity of Caprine Arthritis Encephalitis Virus (CAEV) or Maedi Visna Virus (MVV) in this country. Findings: We performed a molecular and phylogenetic analysis of sheep and goat lentiviruses from a small geographic area in Canada using long sequences from the gag region of 30 infected sheep and 36 infected goats originating from 14 different flocks. Pairwise DNA distance and phylogenetic analyses revealed that all SRLV sequences obtained from sheep clustered tightly with prototypical Maedi visna sequences from America. Similarly, all SRLV strains obtained from goats clustered tightly with prototypical US CAEV-Cork strain. Conclusions: The data reported in this study suggests that Canadian and US SRLV strains share common origins. In addition, the molecular data failed to bring to light any evidence of past cross species transmission between sheep and goats, which is consistent with the type of farming practiced in this part of the country where single species flocks predominate and where opportunities of cross species transmissions are proportionately low.
Resumo:
Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that causes persistent infection characterized by the appearance of inflammatory lesions in various organs. To define the sites of persistence, 5 goats were infected with a molecular clone of CAEV, and the viral load was monitored by real-time-PCR and RT-PCR in different sites 8 years after infection. The lymph nodes proved to be an important virus reservoir, with moderate virus replication relative to what is reported for lentiviruses of primates. Mammary gland and milk cells were preferred sites of viral replication. The viral load varied significantly between animals, which points to an important role of the genetic background. We found a clear association between occurrence of histopathological lesions and viral load in specific sites. The mRNA expression analysis of several cytokines did not reveal differences between animals that could explain the considerable individual variations in viral load observed.
Resumo:
The envelope glycoprotein of small ruminant lentiviruses (SRLV) is a major target of the humoral immune response and contains several linear B-cell epitopes. We amplified and sequenced the genomic segment encoding the SU5 antigenic site of the envelope glycoprotein of several SRLV field isolates. With synthetic peptides based on the deduced amino acid sequences of SU5 in an enzyme-linked immunosorbent assay (ELISA), we have (i) proved the immunodominance of this region regardless of its high variability, (ii) defined the epitopes encompassed by SU5, (iii) illustrated the rapid and peculiar kinetics of seroconversion to this antigenic site, and (iv) shown the rapid and strong maturation of the avidity of the anti-SU5 antibody. Finally, we demonstrated the modular diagnostic potential of SU5 peptides. Under Swiss field conditions, the SU5 ELISA was shown to detect the majority of infected animals and, when applied in a molecular epidemiological context, to permit rapid phylogenetic classification of the infecting virus.
Resumo:
In this report, we describe a short peptide, containing a T helper- and a B-cell epitope, located in the Gag protein of the caprine arthritis encephalitis virus (CAEV). This T-cell epitope is capable of inducing a robust T-cell proliferative response in vaccinated goats with different genetic backgrounds and to provide help for a strong antibody response to the B-cell epitope, indicating that it may function as a universal antigen-carrier for goat vaccines. The primary immune response of goats homozygous for MHC class I and II genes showed an MHC-dependent partitioning in rapid-high and slow-low responses, whereas the memory immune response was strong in both groups, demonstrating that a vaccine based on this immunodominant T helper epitope is capable to overcome genetic differences.
Resumo:
BACKGROUND: Flea allergy dermatitis (FAD) is a common skin disease in dogs and can be induced experimentally. It often coexists with other allergic conditions. So far no studies have investigated the quantitative production of cytokine mRNA in skin biopsies and peripheral blood mononuclear cells (PBMC) in flea allergic dogs. OBJECTIVE: The aim of our study was to improve the understanding of the immunopathogenesis of allergic dermatitis as a response to fleabites. MATERIAL AND METHODS: Allergic and non-allergic dogs were exposed to fleas. Before and after 4 days of flea exposure mRNA was isolated from biopsies and PBMC. Production of chymase, tryptase, IL-4, IL-5, IL-13, TNF-alpha and IFN-gamma mRNA was measured by real-time RT-PCR. The inflammatory infiltrate in the skin was scored semi-quantitatively. The number of eosinophils, mast cells (MC) and IgE+ cells/mm2 was evaluated to complete the picture. RESULTS: FAD was associated with a higher number of MC before flea exposure and with a significant increase of eosinophils after flea exposure as compared to non-allergic dogs. The number of IgE+ cells was higher in allergic dogs before and after flea exposure. In allergic dogs mRNA for most cytokines and proteases tested was higher before flea exposure than after flea exposure. After exposure to fleas an increased mRNA production was only observed in non-allergic dogs. In vitro stimulation with flea antigen resulted in a decreased expression of most cytokines in allergic dogs before flea exposure. In contrast, in PBMC, only increased levels of IL-4 and IL-5 mRNA were observed in allergic dogs before flea exposure. However, after flea exposure and additional stimulation with flea antigen the production of mRNA for all cytokines tested was significantly increased in allergic dogs. CONCLUSION: We demonstrated that the response in biopsies and PBMC is different and that FAD is associated with a TH2 response.
Resumo:
Little sequence information exists on the matrix-protein (MA) encoding region of small ruminant lentiviruses (SRLV). Fifty-two novel sequences were established and permitted a first phylogenetic analysis of this region of the SRLV genome. The variability of the MA encoding region is higher compared to the gag region encoding the capsid protein and surprisingly close to that reported for the env gene. In contrast to primate lentiviruses, the deduced amino acid sequences of the N- and C-terminal domains of MA are variable. This permitted to pinpoint a basic domain in the N-terminal domain that is conserved in all lentiviruses and likely to play an important functional role. Additionally, a seven amino acid insertion was detected in all MVV strains, which may be used to differentiate CAEV and MVV isolates. A molecular epidemiology analysis based on these sequences indicates that the Italian lentivirus strains are closely related to each other and to the CAEV-CO strain, a prototypic strain isolated three decades ago in the US. This suggests a common origin of the SRLV circulating in the monitored flocks, possibly related to the introduction of infected goats in a negative population. Finally, this study shows that the MA region is suitable for phylogenetic studies and may be applied to monitor SRLV eradication programs.
Resumo:
BACKGROUND: Equine insect bite hypersensitivity (IBH) is an immediate-type hypersensitivity reaction provoked by insect-derived allergens. Icelandic horses living in Iceland do not have IBH due to absence of relevant insects, but acquire it at high frequency after being imported to mainland Europe. In contrast, their offspring born in mainland Europe has reduced IBH incidence. T helper 1 (Th1) and Th2 cells and cytokines were determined in Icelandic horses born in Iceland and on the continent and which either have IBH or are healthy. METHODS: Peripheral blood mononuclear cells (PBMC) from these horses were stimulated for 18 h during summer and winter with polyclonal T cell stimuli, IBH allergen(s) or irrelevant allergen(s). Cells were analysed by flow cytometry for interferon-gamma (IFN-gamma) and interleukin-4 (IL-4); RNA was analysed for IFN-gamma, IL-4, IL-5 and IL-13 mRNA. RESULTS: During summer, but not during winter, IBH PBMC stimulated polyclonally showed reduced IFN-gamma mRNA and IFN-gamma-producing cells when compared with those of healthy horses, regardless of origin. PBMC stimulated polyclonally or with IBH allergen showed increased IL-4 mRNA levels and higher numbers of IL-4-producing cells when born in Iceland or showing IBH symptoms. IL-5 and IL-13 mRNA were modulated neither by disease nor by origin. Abrogation of IL-4 production in healthy horses born in mainland Europe may be due, at least in part, to IL-10. There was an increased level of IL-10 in supernatants from PBMC of healthy horses born in mainland Europe and stimulated polyclonally or with IBH allergen. CONCLUSIONS: Modulation of IBH incidence is governed by altered Th1/Th2 ratio, which might be influenced by IL-10.
Resumo:
CD4+ T cells are involved in several immune response pathways used to control viral infections. In this study, a group of genetically defined goats was immunized with a synthetic peptide known to encompass an immunodominant helper T-cell epitope of caprine arthritis encephalitis virus (CAEV). Fifty-five days after challenge with the molecularly cloned CAEV strain CO, the vaccinated animals had a higher proviral load than the controls. The measurement of gamma interferon and interleukin-4 gene expression showed that these cytokines were reliable markers of an ongoing immune response but their balance did not account for more or less efficient control of CAEV replication. In contrast, granulocyte-macrophage colony-stimulating factor appeared to be a key cytokine that might support virus replication in the early phase of infection. The observation of a potential T-cell-mediated enhancement of virus replication supports other recent findings showing that lentivirus-specific T cells can be detrimental to the host, suggesting caution in designing vaccine candidates.
Resumo:
Recombination of different strains and subtypes is a hallmark of lentivirus infections, particularly for human immunodeficiency virus, and contributes significantly to viral diversity and evolution both within individual hosts and within populations. Recombinant viruses are generated in individuals coinfected or superinfected with more than one lentiviral strain or subtype. This, however, has never been described in vivo for the prototype lentivirus maedi-visna virus of sheep and its closely related caprine counterpart, the caprine arthritis-encephalitis virus. Cross-species infections occur in animals living under natural conditions, which suggests that dual infections with small-ruminant lentiviruses (SRLVs) are possible. In this paper we describe the first documented case of coinfection and viral recombination in two naturally infected goats. DNA fragments encompassing a variable region of the envelope glycoprotein were obtained from these two animals by end-limiting dilution PCR of peripheral blood mononuclear cells or infected cocultures. Genetic analyses, including nucleotide sequencing and heteroduplex mobility assays, showed that these goats harbored two distinct populations of SRLVs. Phylogenetic analysis permitted us to assign these sequences to the maedi-visna virus group (SRLV group A) or the caprine arthritis-encephalitis virus group (SRLV group B). SimPlot analysis showed clear evidence of A/B recombination within the env gene segment of a virus detected in one of the two goats. This case provides conclusive evidence that coinfection by different strains of SRLVs of groups A and B can indeed occur and that these viruses actually recombine in vivo.
Resumo:
The compartmentalization of small ruminant lentivirus (SRLV) subtype A (Maedi-Visna virus) and B (caprine arthritis-encephalitis virus) variants was analyzed in colostrum and peripheral blood mononuclear cells of four naturally infected goats. Sequence analysis of DNA and RNA encompassing the V4-V5 env regions showed a differential distribution of SRLV variants between the two compartments. Tissue-specific compartmentalization was demonstrated by phylogenetic analysis in three of the four cases. In these animals colostrum proviral sequences were clustered relative to the blood viral sequences. In one goat, the blood and colostrum-derived provirus sequences were intermingled, suggesting trafficking of virus between the two tissues or mirroring a recent infection. Surprisingly, the pattern of free virus variants in the colostrum of all animals corresponded only partially to that of the proviral form, suggesting that free viruses might not derive from infected colostral cells. The compartmentalization of SRLV between peripheral blood and colostrum indicates that lactogenic transmission may involve specific viruses not present in the proviral populations circulating in the blood.
Resumo:
The caprine arthritis encephalitis virus (CAEV) is a lentivirus that persistently infects goats and sheep. The finding thatCAEV and Maedi-Visna viruses frequently cross the species barrier between goats and sheep, and vice versa, has changedour view of the epidemiology of these viruses that are now referred to assmall ruminant lentiviruses (SRLV).CAEV is transmitted from infected mothers to their offspring, mainly via ingestion of infected colostrum and milk. Thispermits the implementation of control measures based on the segregation ofnewborn kids immediately after birth thatsuccessfully cut the seroprevalence in infected flocks, eliminating CAEV induced clinical disease. CAEV induces overtpathology in about one third of the infected animals. The frequency of affected animals varies in different goat families,pointing to an important genetic component in this disease. The principal manifestations areencephalitis and interstitialpneumonia in young animals,whereas arthritis and mastitispredominate in adult goats. The immunopathologicalmechanisms leading to diseaseare to date unclear and involve the principal components ofthe immune system, i.e., theprofessional antigen presenting cells, which are the principal target of CAEV, and whose activity, e.g., cytokine production,is modulated by the infection, and the B- and T-cell immune responses that are alsomanipulated by the virus.In vivo,infected animals usually have low viral loads, indicating that virus replication istightly restricted by mechanisms thatremain unclear. Finally, the complex biology of SRLV makes them a great challenge for diagnostic laboratories.In this brief review, the literature pertinent toall these aspects is summarized and discussed.
Resumo:
Unique and shared cytogenetic abnormalities have been documented for marginal zone lymphomas (MZLs) arising at different sites. Recently, homozygous deletions of the chromosomal band 6q23, involving the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) gene, a negative regulator of NF-kappaB, were described in ocular adnexal MZL, suggesting a role for A20 as a tumor suppressor in this disease. Here, we investigated inactivation of A20 by DNA mutations or deletions in a panel of extranodal MZL (EMZL), nodal MZL (NMZL), and splenic MZL (SMZL). Inactivating mutations encoding truncated A20 proteins were identified in 6 (19%) of 32 MZLs, including 2 (18%) of 11 EMZLs, 3 (33%) of 9 NMZLs, and 1 (8%) of 12 SMZLs. Two additional unmutated nonsplenic MZLs also showed monoallelic or biallelic A20 deletions by fluorescent in situ hybridization (FISH) and/or SNP-arrays. Thus, A20 inactivation by either somatic mutation and/or deletion represents a common genetic aberration across all MZL subtypes, which may contribute to lymphomagenesis by inducing constitutive NF-kappaB activation.
Resumo:
Short synthetic peptides are important tools in biomedical research permitting to generate hapten specific polyclonal sera for analytical purposes or functional studies. In this paper we provide proof of principle that a peptide located in a highly conserved portion of the Gag protein of the caprine arthritis encephalitis virus and carrying an immunodominant T helper cell epitope functions as an efficient carrier peptide, mediating a strong antibody response to a peptidic hapten encompassing a well-characterized B cell epitope of Env. The carrier and hapten peptides were collinearly synthesized permutating their molecular arrangement. While the antibody response to the hapten was similar for both constructs, the antibody response to a B cell epitope overlapping the T helper cell epitope of the Gag carrier peptide was considerably different. This permits a modular use of the carrier peptide to generate antibody directed exclusively to the hapten peptide or a strong humoral response to both carrier- and hapten-peptide. Finally, we have mapped the epitopes involved in this polarized antibody response and discussed the potential immunological implications.
Resumo:
Live attenuated vaccines provide the most consistent protective immunity in experimental models of lentivirus infections. In this study we tested the hypothesis that animals infected with a naturally attenuated small ruminant lentivirus field strain of genotype E may control a challenge infection with a virulent strain of the caprine arthritis encephalitis virus (CAEV-CO). Within genotype E, Roccaverano strain has been described as attenuated since decreased arthritic pathological indexes were recorded in Roccaverano-infected animals compared to animals of the same breed infected with genotype B strains. Moreover, under natural conditions, animals double-infected with genotypes B and E appear less prone to develop SRLV-related disease, leading to a putative protective role of Roccaverano strain. Here we present evidence that goats experimentally infected with the avirulent genotype E SRLV-Roccaverano strain control the proviral load of a pathogenic challenge virus (CAEV-CO strain) more efficiently than naïve animals and appear to limit the spread of histological lesions to the contralateral joints.
Resumo:
Three field isolates of small ruminant lentiviruses (SRLVs) were derived from a mixed flock of goats and sheep certified for many years as free of caprine arthritis encephalitis virus (CAEV). The phylogenetic analysis of pol sequences permitted to classify these isolates as A4 subtype. None of the animals showed clinical signs of SRLV infection, confirming previous observations which had suggested that this particular subtype is highly attenuated, at least for goats. A quantitative real time PCR strategy based on primers and probes derived from a highly variable env region permitted us to classify the animals as uninfected, singly or doubly infected. The performance of different serological tools based on this classification revealed their profound inadequacy in monitoring animals infected with this particular SRLV subtype. In vitro, the isolates showed differences in their cytopathicity and a tendency to replicate more efficiently in goat than sheep cells, especially in goat macrophages. By contrast, in vivo, these viruses reached significantly higher viral loads in sheep than in goats. Both env subtypes infected goats and sheep with equal efficiency. One of these, however, reached significantly higher viral loads in both species. In conclusion, we characterized three isolates of the SRLV subtype A4 that efficiently circulate in a mixed herd of goats and sheep in spite of their apparent attenuation and a strict physical separation between goats and sheep. The poor performance of the serological tools applied indicates that, to support an SRLV eradication campaign, it is imperative to develop novel, subtype specific tools.