983 resultados para Step Length Estimation
Resumo:
In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
Hidden Markov Models (HMMs) have been successfully applied to different modelling and classification problems from different areas over the recent years. An important step in using HMMs is the initialisation of the parameters of the model as the subsequent learning of HMM’s parameters will be dependent on these values. This initialisation should take into account the knowledge about the addressed problem and also optimisation techniques to estimate the best initial parameters given a cost function, and consequently, to estimate the best log-likelihood. This paper proposes the initialisation of Hidden Markov Models parameters using the optimisation algorithm Differential Evolution with the aim to obtain the best log-likelihood.
Resumo:
Multi-rate multicarrier DS/CDMA is a potentially attractive multiple access method for future wireless communications networks that must support multimedia, and thus multi-rate, traffic. Several receiver structures exist for single-rate multicarrier systems, but little has been reported on multi-rate multicarrier systems. Considering that high-performance detection such as coherent demodulation needs the explicit knowledge of the channel, based on the finite-length chip waveform truncation, this paper proposes a subspace-based scheme for timing and channel estimation in multi-rate multicarrier DS/CDMA systems, which is applicable to both multicode and variable spreading factor systems. The performance of the proposed scheme for these two multi-rate systems is validated via numerical simulations. The effects of the finite-length chip waveform truncation on the performance of the proposed scheme is also analyzed theoretically.
Resumo:
A particle filter is a data assimilation scheme that employs a fully nonlinear, non-Gaussian analysis step. Unfortunately as the size of the state grows the number of ensemble members required for the particle filter to converge to the true solution increases exponentially. To overcome this Vaswani [Vaswani N. 2008. IEEE Trans Signal Process 56:4583–97] proposed a new method known as mode tracking to improve the efficiency of the particle filter. When mode tracking, the state is split into two subspaces. One subspace is forecast using the particle filter, the other is treated so that its values are set equal to the mode of the marginal pdf. There are many ways to split the state. One hypothesis is that the best results should be obtained from the particle filter with mode tracking when we mode track the maximum number of unimodal dimensions. The aim of this paper is to test this hypothesis using the three dimensional stochastic Lorenz equations with direct observations. It is found that mode tracking the maximum number of unimodal dimensions does not always provide the best result. The best choice of states to mode track depends on the number of particles used and the accuracy and frequency of the observations.
Resumo:
Optimal estimation (OE) is applied as a technique for retrieving sea surface temperature (SST) from thermal imagery obtained by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on Meteosat 9. OE requires simulation of observations as part of the retrieval process, and this is done here using numerical weather prediction fields and a fast radiative transfer model. Bias correction of the simulated brightness temperatures (BTs) is found to be a necessary step before retrieval, and is achieved by filtered averaging of simulations minus observations over a time period of 20 days and spatial scale of 2.5° in latitude and longitude. Throughout this study, BT observations are clear-sky averages over cells of size 0.5° in latitude and longitude. Results for the OE SST are compared to results using a traditional non-linear retrieval algorithm (“NLSST”), both validated against a set of 30108 night-time matches with drifting buoy observations. For the OE SST the mean difference with respect to drifter SSTs is − 0.01 K and the standard deviation is 0.47 K, compared to − 0.38 K and 0.70 K respectively for the NLSST algorithm. Perhaps more importantly, systematic biases in NLSST with respect to geographical location, atmospheric water vapour and satellite zenith angle are greatly reduced for the OE SST. However, the OE SST is calculated to have a lower sensitivity of retrieved SST to true SST variations than the NLSST. This feature would be a disadvantage for observing SST fronts and diurnal variability, and raises questions as to how best to exploit OE techniques at SEVIRI's full spatial resolution.
Resumo:
The Bollène-2002 Experiment was aimed at developing the use of a radar volume-scanning strategy for conducting radar rainfall estimations in the mountainous regions of France. A developmental radar processing system, called Traitements Régionalisés et Adaptatifs de Données Radar pour l’Hydrologie (Regionalized and Adaptive Radar Data Processing for Hydrological Applications), has been built and several algorithms were specifically produced as part of this project. These algorithms include 1) a clutter identification technique based on the pulse-to-pulse variability of reflectivity Z for noncoherent radar, 2) a coupled procedure for determining a rain partition between convective and widespread rainfall R and the associated normalized vertical profiles of reflectivity, and 3) a method for calculating reflectivity at ground level from reflectivities measured aloft. Several radar processing strategies, including nonadaptive, time-adaptive, and space–time-adaptive variants, have been implemented to assess the performance of these new algorithms. Reference rainfall data were derived from a careful analysis of rain gauge datasets furnished by the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. The assessment criteria for five intense and long-lasting Mediterranean rain events have proven that good quantitative precipitation estimates can be obtained from radar data alone within 100-km range by using well-sited, well-maintained radar systems and sophisticated, physically based data-processing systems. The basic requirements entail performing accurate electronic calibration and stability verification, determining the radar detection domain, achieving efficient clutter elimination, and capturing the vertical structure(s) of reflectivity for the target event. Radar performance was shown to depend on type of rainfall, with better results obtained with deep convective rain systems (Nash coefficients of roughly 0.90 for point radar–rain gauge comparisons at the event time step), as opposed to shallow convective and frontal rain systems (Nash coefficients in the 0.6–0.8 range). In comparison with time-adaptive strategies, the space–time-adaptive strategy yields a very significant reduction in the radar–rain gauge bias while the level of scatter remains basically unchanged. Because the Z–R relationships have not been optimized in this study, results are attributed to an improved processing of spatial variations in the vertical profile of reflectivity. The two main recommendations for future work consist of adapting the rain separation method for radar network operations and documenting Z–R relationships conditional on rainfall type.
Resumo:
From Milsom's equations, which describe the geometry of ray-path hops reflected from the ionospheric F-layer, algorithms for the simplified estimation of mirror-reflection height are developed. These allow for hop length and the effects of variations in underlying ionisation (via the ratio of the F2- and E-layer critical frequencies) and F2-layer peak height (via the M(3000)F2-factor). Separate algorithms are presented which are applicable to a range of signal frequencies about the FOT and to propagation at the MUF. The accuracies and complexities of the algorithms are compared with those inherent in the use of a procedure based on an equation developed by Shimazaki.
Resumo:
This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.
Resumo:
Random effect models have been widely applied in many fields of research. However, models with uncertain design matrices for random effects have been little investigated before. In some applications with such problems, an expectation method has been used for simplicity. This method does not include the extra information of uncertainty in the design matrix is not included. The closed solution for this problem is generally difficult to attain. We therefore propose an two-step algorithm for estimating the parameters, especially the variance components in the model. The implementation is based on Monte Carlo approximation and a Newton-Raphson-based EM algorithm. As an example, a simulated genetics dataset was analyzed. The results showed that the proportion of the total variance explained by the random effects was accurately estimated, which was highly underestimated by the expectation method. By introducing heuristic search and optimization methods, the algorithm can possibly be developed to infer the 'model-based' best design matrix and the corresponding best estimates.
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
This paper presents semiparametric estimators of changes in inequality measures of a dependent variable distribution taking into account the possible changes on the distributions of covariates. When we do not impose parametric assumptions on the conditional distribution of the dependent variable given covariates, this problem becomes equivalent to estimation of distributional impacts of interventions (treatment) when selection to the program is based on observable characteristics. The distributional impacts of a treatment will be calculated as differences in inequality measures of the potential outcomes of receiving and not receiving the treatment. These differences are called here Inequality Treatment Effects (ITE). The estimation procedure involves a first non-parametric step in which the probability of receiving treatment given covariates, the propensity-score, is estimated. Using the inverse probability weighting method to estimate parameters of the marginal distribution of potential outcomes, in the second step weighted sample versions of inequality measures are computed. Root-N consistency, asymptotic normality and semiparametric efficiency are shown for the semiparametric estimators proposed. A Monte Carlo exercise is performed to investigate the behavior in finite samples of the estimator derived in the paper. We also apply our method to the evaluation of a job training program.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step. The key difference is that we do not impose any parametric restriction on the nuisance functions that are estimated in a first stage, but retain a fully nonparametric model instead. We call these estimators semiparametric doubly robust estimators (SDREs), and show that they possess superior theoretical and practical properties compared to generic semiparametric two-step estimators. In particular, our estimators have substantially smaller first-order bias, allow for a wider range of nonparametric first-stage estimates, rate-optimal choices of smoothing parameters and data-driven estimates thereof, and their stochastic behavior can be well-approximated by classical first-order asymptotics. SDREs exist for a wide range of parameters of interest, particularly in semiparametric missing data and causal inference models. We illustrate our method with a simulation exercise.
Resumo:
Introduction. Leaf area is often related to plant growth, development, physiology and yield. Many non-destructive models have been proposed for leaf area estimation of several plant genotypes, demonstrating that leaf length, leaf width and leaf area are closely correlated. Thus, the objective of our study was to develop a reliable model for leaf area estimation from linear measurements of leaf dimensions for citrus genotypes. Materials and methods. Leaves of citrus genotypes were harvested, and their dimensions (length, width and area) were measured. Values of leaf area were regressed against length, width, the square of length, the square of width and the product (length x width). The most accurate equations, either linear or second-order polynomial, were regressed again with a new data set; then the most reliable equation was defined. Results and discussion. The first analysis showed that the variables length, width and the square of length gave better results in second-order polynomial equations, while the linear equations were more suitable and accurate when the width and the product (length x width) were used. When these equations were regressed with the new data set, the coefficient of determination (R(2)) and the agreement index 'd' were higher for the one that used the variable product (length x width), while the Mean Absolute Percentage Error was lower. Conclusion. The product of the simple leaf dimensions (length x width) can provide a reliable and simple non-destructive model for leaf area estimation across citrus genotypes.
Resumo:
A tungsten carbide coating on the integrated platform of a transversely heated graphite atomizer was used as a modifier for the direct determination of Se in soil extracts by graphite furnace atomic absorption spectrometry. Diethylenetriaminepentaacetic acid (0.0050 mol L-1) plus ammonium hydrogencarbonate (1.0 mol L-1) extracted predominantly available inorganic selenate from soil. The formation of a large amount of carbonaceous residue inside the atomizer was avoided with a first pyrolysis step at 600 degreesC assisted by air during 30 s. For 20 muL of soil extracts delivered to the atomizer and calibration by matrix matching, an analytical curve (10.0-100 mug of L-1) with good linear correlation (r = 0.999) between integrated absorbance and analyte concentration was established. The characteristic mass was similar to63 pg of Se, and the lifetime of the tube was similar to750 firings. The limit of detection was 1.6 mug L-1, and the relative standard deviations (n = 12) were typically <4% for a soil extract containing 50 mug of L-1. The accuracy of the determination of Se was checked for soil samples by means of addition/recovery tests. Recovery data of Se added to four enriched soil samples varied from 80 to 90% and indicated an accurate method.