992 resultados para Steel metallurgy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behaviour of Fe-18Mn-0.6C-1Al (wt%) TWIP steel was modelled in the temperature range from room temperature to 400°C. The proposed constitutive model was based on the Kocks-Mecking-Estrin (KME) model. The model parameters were determined using extensive experimental measurements of the physical parameters such as the dislocation mean free path and the volume fraction of twinned grains. More than 100 grains with a total area of ~300μm2 were examined at different strain levels over the entire stress-strain curve. Uniaxial tensile deformation of the TWIP steel was modelled for different deformation temperatures using a modelling approach which considers two distinct populations of grains: twinned and twin-free ones. A key point of the work was a meticulous experimental determination of the evolution of the volume fraction of twinned grains during uniaxial tensile deformation. This information was implemented in a phase-mixture model that yielded a very good agreement with the experimental tensile behaviour for the tested range of deformation temperatures. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional interfacial grain boundary network in a fully austenitic high-manganese steel was studied as a function of all five macroscopic crystallographic parameters (i.e. lattice misorientation and grain boundary plane normal) using electron backscattering diffraction mapping in conjunction with focused ion beam serial sectioning. The relative grain boundary area and energy distributions were strongly influenced by both the grain boundary plane orientation and the lattice misorientation. Grain boundaries terminated by (1 1 1) plane orientations revealed relatively higher populations and lower energies compared with other boundaries. The most frequently observed grain boundaries were {1 1 1} symmetric twist boundaries with the Σ3 misorientation, which also had the lowest energy. On average, the relative areas of different grain boundary types were inversely correlated to their energies. A comparison between the current result and previously reported observations (e.g. high-purity Ni) revealed that polycrystals with the same atomic structure (e.g. face-centered cubic) have very similar grain boundary character and energy distributions. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work investigates the transformation behavior of a low-carbon Mo-Nb linepipe steel and the corresponding transformation product microstructures using deformation dilatometry. The continuous cooling transformation (CCT) diagrams have been constructed for both the fully recrystallized austenite and that deformed in uniaxial compression at 1148 K (875 °C) to a strain of 0.5 for cooling rates ranging from 0.1 to about 100 K/s. The obtained microstructures have been studied in detail using electron backscattered diffraction complemented by transmission electron microscopy. Heavy deformation of the parent austenite has caused a significant expansion of the polygonal ferrite transformation field in the CCT diagram, as well as a shift in the non-equilibrium ferrite transformation fields toward higher cooling rates. Furthermore, the austenite deformation has resulted in a pronounced refinement in both the effective grain (sheaf/packet) size and substructure unit size of the non-equilibrium ferrite microstructures. The optimum microstructure expected to display an excellent balance between strength and toughness is a mix of quasi-polygonal ferrite and granular bainite (often termed “acicular ferrite”) produced from the heavily deformed austenite within a processing window covering the cooling rates from about 10 to about 100 K/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work investigated the evolution of strain-induced NbC precipitates in a model austenitic Fe-30Ni-Nb steel deformed at 925 °C to a strain of 0.2 during post-deformation holding between 3 and 1000 s and their effect on the reloading flow stress. The precipitate particles preferentially nucleated on the nodes of the periodic dislocation networks constituting microband walls. Holding for 10 s resulted in the formation of fine, largely coherent NbC particles with a mean diameter of ∼5 nm, which displayed a cube-on-cube orientation relationship with austenite and caused the maximum increase in the reloading steady-state flow stress. A further increase in the holding time from 30 to 1000 s led to the formation of semi-coherent, gradually coarser and more widely spaced particles with a mean diameter of 8 nm and above, which led to a gradual decrease in the reloading steady-state flow stress. The holding time increase resulted in progressive disintegration of the dislocation substructure and dislocation annihilation through static recovery processes, which was also reflected by the measured softening fractions. The precipitate particle shape changed during post-deformation annealing from elliptical to faceted octahedral and subsequently to tetra-kai-decahedral. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multi-phase, metastable, and multi-scale (M3) constitution of a novel transformation-induced plasticity (TRIP) steel (Fe-0.17C-6.5Mn-1.1Al-0.22Mo-0.05Nb, wt pct) was designed through thermodynamic calculations combined with experimental analysis. In this study, Mo and Nb microalloying was used to control the fraction of retained austenite and its mechanical stability during tensile deformation and to improve the yield strength. Thermodynamic calculations were developed to determine the critical annealing temperature, at which a large fraction of retained austenite (~38 pct) would be obtained through the effects of solute enrichment. The experimental observation was in good agreement with the predicted results. According to the critical annealing temperature, such an ultrafine (<200 nm) M3, microstructure with optimum mechanical stability was successfully achieved. The results of this work demonstrated the superior performance with improved yield strength of 1020 to 1140 MPa and excellent ductility (>30 pct), as compared with other TRIP steels. Both angle-selective backscatter and electron backscatter diffraction techniques were employed to interpret the transformation from the deformed martensitic laths to the ultrafine austenite and ferrite duplex structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of a deep cryogenic treatment on the microstructure of a super-bainitic steel was investigated. It was shown that quenching the super-bainitc steel in -196°C liquid nitrogen resulted in the transformation of retained austenite to two phases: ~20 nm thick martensite films and some nano carbides with a ~25 nm diameter. Some refinement of the retained austenite occurred, due to formation of fine martensite laths within the retained austenite. The evolution of these new phases resulted in an increase in the average hardness of the super-bainitic steel from 641 to ~670 HV1. © 2014 ISIJ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multi-phase structure of a novel low-alloy transformation induced plasticity (TRIP) steel was designed through experimental analysis. The evolutions of both microstructure and mechanical properties during the two-stage heat treatment were analyzed. The phase transformations during the intercritical annealing and the isothermal bainitic transformation were investigated by means of dilatometry. It was shown that two types of C diffusion were detected during intercritical annealing and a complex microstructure was formed after heat treatment. The processing parameters were selected in such a way to obtain microstructures with systematically different volume fractions of ferrite, bainite and retained austenite. The volume fractions of ferrite and retained austenite were found to be two main factors controlling the ductility. Furthermore, a high volume fraction of C-rich retained austenite, which was stabilized at room temperature, was the origin of a TRIP effect. The resulting material demonstrates a significant improvement in the ultimate tensile strength (1077. MPa) with good uniform elongation (22.5%), as compared to conventional TRIP steels. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The severe plastic deformation of a Twinning Induced Plasticity (TWIP), 0.61C-22.3Mn-0.19Si-0.14Ni-0.27Cr (wt. %) steel by Equal Channel Angular Pressing (ECAP) at elevated temperatures was used to study the deformation mechanism as a function of accumulated strain and processing parameters. The relationship between the microstructures after different deformation schedules of ECAP at the temperatures of 200, 300 and 400oC, strain hardening behavior and mechanical properties was studied. The best balance between strength and ductility (1702 MPa and 24%) was found after 2 passes at 400oC and 300oC of ECAP. It was due to the formation of deformation microbands and twins in the microstructure. The twinning was observed after all deformation schedules except after 1 pass at 400oC. The important finding was the formation of twins in the ultrafine grains. Moreover, the stacking faults were observed in the subgrains with the size of 50nm. It is also worth mentioning the formation of nano- twins within the micro-twins at the same time. It was found that the deformation schedule affects the dislocation substructure with formation of deformation bands, cells, subgrains, two variants of twins that, in turn, influence the strain-hardening behavior and mechanical properties. Keywords: Twinning Induced Plasticity steels; Equal Channel Angular Pressing; mechanical properties; transmission electron microscopy; micro/nano twins; dislocation substructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single pass warm rolling and compression experiments were carried out from ambient to 800°C for ultra-low carbon (ULC) steel with ∼100 ppm carbon and interstitial free (IF) steels, both with two levels of silicon. Subsequently, annealing was done in order to recrystallize the deformed specimens. The main purpose of this study was to understand the effects of rolling temperature and silicon on stress responses and textures. This study comprises two main themes: flow stress and strain rate sensitivity during compression and shear banding and textures in warm rolled specimens. The effects of deformation temperature on in-grain shear bands were different between ULC-Si and IF-Si steels. As in previous work with more conventional steels, in-grain shear bands in the IF grade had low sensitivity to rolling temperature, while those in the ULC grade depended significantly on the deformation temperature. However, the temperature profile of shear banding in the ULC grade was approximately 150°C higher than in previous work. Deformation and recrystallisation textures for both IF and ULC grades depended on their rolling temperatures. The variation of both grain size and texture after annealing can be explained by the rise and fall of in-grain shear banding activity which is related to the strain rate sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although martensite is recognised as a very strong phase in carbon steels, its initial yielding commences at low stresses and the tensile stress-strain curve shows a smooth, rounded form. Evidence is presented from x-ray diffraction to show that this behaviour is due to the presence of intra-granular stresses that are residues after the shear transformation from austenite to martensite. These internal stresses are reduced in magnitude by plastic deformation and also by tempering. Reduction of internal stress due to plasticity is shown by a decrease in XRD line broadening after deformation. A simple model is presented in which the stress-strain behaviour is controlled by relaxation of the internal stresses almost up to the point of the ultimate tensile strength. It demonstrates that only a very small fraction of the material remaining in a purely elastic state provides a large stabilising effect resisting necking. A corollary of this is that the uniform elongation of martensitic steel actually increases with increase in the strength level. Effects of heat treatment are also reproduced in the model, including the increase in conventional yield stress (Rp0.2) that occurs after low temperature tempering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work has investigated the evolution of microbands (MBs) and their interaction with strain-induced NbC precipitates during uniaxial compression of a model austenitic Fe-30Ni-Nb steel at 925 °C. The (1 1 0) fibre grains, both without and with copious amounts of precipitates, contained up to large strains crystallographic MBs aligned close to the highly stressed {1 1 1} slip planes having large Schmid factors. The MBs thus maintained their crystallographic character during straining, through continuously rearranging themselves, and did not follow the macroscopically imposed rigid body rotation. During double-pass deformation, fine NbC particles formed at short inter-pass holding remained strongly pinned at small reloading strains and appeared to be dragged by rearranging MB walls. With increasing reloading strain, the fine precipitates became progressively released from the above walls. During reloading after increased holding time, the coarsened particles tended with their increased size to become increasingly detached from the MB walls already at a small strain. The precipitate-free MB wall segments rearranged during straining to maintain their crystallographic alignment, while the detached precipitates followed the sample shape change and rotated towards the compression plane. The MB wall rearrangement generally occurred through cooperative migration of the corresponding dislocation networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a solution containing ammonium fluoride (NH4F) and nitric acid (HNO3) was used as an alternative to the conventional highly toxic pickling solution HF/HNO3 for pickling weldments of selected stainless steels including Type 316 stainless steel (UNS S31600), duplex stainless steel 2205 (UNS S32205), and super duplex stainless steel 2507 (UNS S32750). Electrochemical and surface analytical methods were used to understand the effects of pickling on the stainless steel weldments. Cyclic potentiodynamic polarization (CPP) test results indicated that the restoration of passivity of stainless steel weldments could be achieved by pickling the weldments in both HF/HNO3 solution and NH4F/HNO3 solutions. Scanning electron microscopy observation of the UNS S32750 weldment surface revealed that both the HF/HNO3 solution and the NH4F/HNO3 solution could remove the heat tint on the weldment. X-ray photoelectron spectroscopy analysis indicated that treatment in these two pickling solutions produced passive films with similar characteristics. Thus, this work suggests that the NH4F/HNO3 solution is a promising alternative to HF/HNO3 solution for the pickling of stainless steel weldments, and that the CPP test approach can be used in conjunction with surface analytical methods for further development of safer and environmentally friendly picklingsolutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An as-cast austenitic stainless steel was hot deformed at 1173 K, 1223 K, and 1373 K (900 °C, 950 °C, and 1100 °C) to a strain of 1 with a strain rate of 0.5 or 5 s−1. The recrystallised fraction is observed to be dependent on dynamic recrystallisation (DRX). DRX grains nucleated at the initial stages of recrystallization have similar orientation to that of the deformed grains. With increasing deformation, Cube texture dominates, mainly due to multiple twinning and grain rotation during deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work was aimed at a detailed investigation of the orientation dependence of the microstructure characteristics in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 1198 K (925 °C) at a strain rate of 1 s−1 to several strain levels up to 1.0. The quantification of the substructure evolution as a function of strain was performed for the stable 〈011〉 oriented grains. Other grain orientations were also investigated in detail at a strain of 0.2. The 〈110〉 oriented grains contained self-screening arrays of “microbands” (MBs) aligned with high Schmid factor {111} slip planes. The MB crystallographic alignment was largely maintained up to a strain of 1.0, which suggests that the corresponding boundaries kept continuously rearranging themselves during straining and did not follow the sample shape change. The mean MB spacing decreased and misorientation angle increased with strain towards saturation, indicating the operation of the “repolygonization” dynamic recovery mechanism. The non-〈011〉 oriented grains displayed a strong tendency to split during deformation into deformation bands having alternating orientations and being mutually rotated by large angles. The bands were separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances.