968 resultados para Steel - Metallurgy
Resumo:
The art of Powder Metallurgy deals with the preparation of metal powders and their utilization. As a more pertinent definition, the following has been suggested: "Powder Metallurgy is the art of producing metal powders and shaped objects from individual, mixed, or alloyed metal powders, with or without the inclusion of non-metallic constituents".
Resumo:
The object of casehardening is to produce articles of steel having a tough or ductile interior and a hard surface. Quenching produces a surface somewhat harder than the interior, but in order to obtain a high surface hardness, the percentage of alloying elements in the steel must be raised to such an extent that the core or central portion becomes hard and brittle also.
Resumo:
The purpose of this thesis is to set forth the method followed, the laboratory procedure practiced, the results obtained, the conclusions drawn, and the recommendations proposed as a consequence of a metallographic study of the isothermal transformation of an S.A.E. 6150 steel.
Resumo:
Se ha estudiado el acero inoxidable pulvimetalúrgico AISI 430L, comparando la sinterización en dos atmósferas diferentes; en vacío, y en una atmósfera que contiene nitrógeno. Se ha desarrollado un tratamiento térmico con objeto de incrementar las propiedades mecánicas, mediante la modificación microestructural de los nitruros complejos de hierro y cromo precipitados durante la etapa de sinterización. Se han evaluado las propiedades físicas y a la vez se ha realizado un análisis microestructural con el fin de relacionar la microestructura con el incremento en las propiedades mecánicas. Influence of sintering atmosphere on the mechanical properties of steel P / M AISI 430L. It has studied the stainless steel powder metallurgy AISI 430L. It has compared the sintering in two different atmospheres; in vacuum, and in an atmosphere containing nitrogen. It has developed a heat treatment with the aim of improving the mechanical properties. This has been done through microstructural modification of complex nitrides of iron and chromium precipitates during the phase of sintering. Physical properties have been evaluated and are been performing a microstructural analysis for microstructure related to the increase in mechanical properties.
Resumo:
"Work performed under Contract No. AT-(40-1)-1310."
Resumo:
"Metallurgy and Ceramics."
Resumo:
The slip-casting technique, which is successfully employed in the ceramic industry, was utilized to produce sintered stainless steel components experimentally. The procedure used is described, along with an evaluation of the physical and mechanical properties of the samples produced. Specimens were made with properties comparable to those of wrought stainless steel and of cold pressed and sintered steel powder.
Resumo:
Metallurgy of iron [by Orin W. McMullan]--Metallurgy of steel [by Orin W. McMullan]--Metallurgy of non-ferrous metals [by Albert M. Talbot]
Resumo:
"The engineering authority of the steel industry."
Resumo:
A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.
Resumo:
The initiation of stress corrosion cracking (SCC) was studied using scanning electron microscope observations of linearly increasing stress test specimens. SCC initiation from the following surfaces was studied: (i) initiation from the commercial pipe surface covered by the Zn coating, (ii) initiation from a mechanically polished surface with a deformed layer, and (iii) initiation from an electro-polished surface. SCC initiation involved different features for these surfaces as follows. (i) For the Zn coated commercial pipe surface, a crack in the Zn coating led to the dissolution of the deformed layer and when the deformed layer was penetrated, intergranular SCC initiation became possible. (ii) For a mechanically polished surface with a deformed layer, cracks in the surface oxide concentrated the anodic dissolution to such an extent that there was transgranular SCC in the deformed layer. SCC was intergranular when the deformed layer had been penetrated. Transgranular stress corrosion cracks were stopped at ferrite grain boundaries (GBs) oriented perpendicular to the SCC propagation direction. (iii) For an electro-polished surface, the surface oxide film was cracked at many locations, but intergranular SCC only propagated into the steel when the oxide crack corresponded to a GB. An oxide crack away from a GB is expected to be healed. The observed SCC initiation mechanism was not associated with simple preferential chemical attack of the ferrite GBs. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The cathodic and anodic characteristics of freshly polished and pre-reduced UNS S32550 (ASTM A479) super duplex stainless steel in a filtered and conductivity-adjusted seawater have been investigated under controlled flow conditions. A rotating cylinder electrode was used together with both steady and non-steady-state voltammetry and a potential step current transient technique to investigate the electrode reactions in the fully characterized electrolyte. Both oxygen reduction and hydrogen evolution were highly irreversible and the material exhibited excellent passivation and repassivation kinetics. Relative corrosion rates were derived and the corrosion mechanism of the alloy was found to be completely independent of the mass-transfer effects, which can contribute to flow-induced corrosion.
Resumo:
An investigation was carried out into the galvanic corrosion of magnesium alloy AZ91D in contact with zinc, aluminium alloy A380 and 4150 steel. Specially designed test panels were used to measure galvanic currents under salt spray conditions. It was found that the distributions of the galvanic current densities on AZ91D and on the cathodes were different. An insulating spacer between the AZ91D anode and the cathodes could not eliminate galvanic corrosion. Steel was the worst cathode and aluminium the least aggressive to AZ91D. Corrosion products from the anode and cathodes appeared to be able to affect the galvanic corrosion process through an alkalisation, passivation, poisoning effect or shortcut effect. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The galvanic corrosion of magnesium alloy AZ91D coupled to a steel fastener was studied using a boundary element method (BEM) model and experimental measurements. The BEM model used the measured polarization curves as boundary conditions. The experimental program involved measuring the total corrosion rate as a function of distance from the interface of the magnesium in the form of a sheet containing a mild steel circular insert (5 to 30 mm in diameter). The measured total corrosion rate was interpreted as due to galvanic corrosion plus self corrosion. For a typical case, the self corrosion was estimated typically to be similar to 230 mm/y for an area surrounding the interface and to a distance of about I cm from the interface. Scanning Kelvin Probe Force Microscopy (SKPFM) revealed microgalvanic cells with potential differences of approximately 100 mV across the AZ91D surface. These microgalvanic cells may influence the relative contributions of galvanic and self corrosion to the total corrosion of AZ91D.