986 resultados para Statistical decision.
Resumo:
Traffic demand increases are pushing aging ground transportation infrastructures to their theoretical capacity. The result of this demand is traffic bottlenecks that are a major cause of delay on urban freeways. In addition, the queues associated with those bottlenecks increase the probability of a crash while adversely affecting environmental measures such as emissions and fuel consumption. With limited resources available for network expansion, traffic professionals have developed active traffic management systems (ATMS) in an attempt to mitigate the negative consequences of traffic bottlenecks. Among these ATMS strategies, variable speed limits (VSL) and ramp metering (RM) have been gaining international interests for their potential to improve safety, mobility, and environmental measures at freeway bottlenecks. Though previous studies have shown the tremendous potential of variable speed limit (VSL) and VSL paired with ramp metering (VSLRM) control, little guidance has been developed to assist decision makers in the planning phase of a congestion mitigation project that is considering VSL or VSLRM control. To address this need, this study has developed a comprehensive decision/deployment support tool for the application of VSL and VSLRM control in recurrently congested environments. The decision tool will assist practitioners in deciding the most appropriate control strategy at a candidate site, which candidate sites have the most potential to benefit from the suggested control strategy, and how to most effectively design the field deployment of the suggested control strategy at each implementation site. To do so, the tool is comprised of three key modules, (1) Decision Module, (2) Benefits Module, and (3) Deployment Guidelines Module. Each module uses commonly known traffic flow and geometric parameters as inputs to statistical models and empirically based procedures to provide guidance on the application of VSL and VSLRM at each candidate site. These models and procedures were developed from the outputs of simulated experiments, calibrated with field data. To demonstrate the application of the tool, a list of real-world candidate sites were selected from the Maryland State Highway Administration Mobility Report. Here, field data from each candidate site was input into the tool to illustrate the step-by-step process required for efficient planning of VSL or VSLRM control. The output of the tool includes the suggested control system at each site, a ranking of the sites based on the expected benefit-to-cost ratio, and guidelines on how to deploy the VSL signs, ramp meters, and detectors at the deployment site(s). This research has the potential to assist traffic engineers in the planning of VSL and VSLRM control, thus enhancing the procedure for allocating limited resources for mobility and safety improvements on highways plagued by recurrent congestion.
Resumo:
In a microscopic setting, humans behave in rich and unexpected ways. In a macroscopic setting, however, distinctive patterns of group behavior emerge, leading statistical physicists to search for an underlying mechanism. The aim of this dissertation is to analyze the macroscopic patterns of competing ideas in order to discern the mechanics of how group opinions form at the microscopic level. First, we explore the competition of answers in online Q&A (question and answer) boards. We find that a simple individual-level model can capture important features of user behavior, especially as the number of answers to a question grows. Our model further suggests that the wisdom of crowds may be constrained by information overload, in which users are unable to thoroughly evaluate each answer and therefore tend to use heuristics to pick what they believe is the best answer. Next, we explore models of opinion spread among voters to explain observed universal statistical patterns such as rescaled vote distributions and logarithmic vote correlations. We introduce a simple model that can explain both properties, as well as why it takes so long for large groups to reach consensus. An important feature of the model that facilitates agreement with data is that individuals become more stubborn (unwilling to change their opinion) over time. Finally, we explore potential underlying mechanisms for opinion formation in juries, by comparing data to various types of models. We find that different null hypotheses in which jurors do not interact when reaching a decision are in strong disagreement with data compared to a simple interaction model. These findings provide conceptual and mechanistic support for previous work that has found mutual influence can play a large role in group decisions. In addition, by matching our models to data, we are able to infer the time scales over which individuals change their opinions for different jury contexts. We find that these values increase as a function of the trial time, suggesting that jurors and judicial panels exhibit a kind of stubbornness similar to what we include in our model of voting behavior.
Resumo:
This dissertation proposes statistical methods to formulate, estimate and apply complex transportation models. Two main problems are part of the analyses conducted and presented in this dissertation. The first method solves an econometric problem and is concerned with the joint estimation of models that contain both discrete and continuous decision variables. The use of ordered models along with a regression is proposed and their effectiveness is evaluated with respect to unordered models. Procedure to calculate and optimize the log-likelihood functions of both discrete-continuous approaches are derived, and difficulties associated with the estimation of unordered models explained. Numerical approximation methods based on the Genz algortithm are implemented in order to solve the multidimensional integral associated with the unordered modeling structure. The problems deriving from the lack of smoothness of the probit model around the maximum of the log-likelihood function, which makes the optimization and the calculation of standard deviations very difficult, are carefully analyzed. A methodology to perform out-of-sample validation in the context of a joint model is proposed. Comprehensive numerical experiments have been conducted on both simulated and real data. In particular, the discrete-continuous models are estimated and applied to vehicle ownership and use models on data extracted from the 2009 National Household Travel Survey. The second part of this work offers a comprehensive statistical analysis of free-flow speed distribution; the method is applied to data collected on a sample of roads in Italy. A linear mixed model that includes speed quantiles in its predictors is estimated. Results show that there is no road effect in the analysis of free-flow speeds, which is particularly important for model transferability. A very general framework to predict random effects with few observations and incomplete access to model covariates is formulated and applied to predict the distribution of free-flow speed quantiles. The speed distribution of most road sections is successfully predicted; jack-knife estimates are calculated and used to explain why some sections are poorly predicted. Eventually, this work contributes to the literature in transportation modeling by proposing econometric model formulations for discrete-continuous variables, more efficient methods for the calculation of multivariate normal probabilities, and random effects models for free-flow speed estimation that takes into account the survey design. All methods are rigorously validated on both real and simulated data.
Resumo:
As climate change continues to impact socio-ecological systems, tools that assist conservation managers to understand vulnerability and target adaptations are essential. Quantitative assessments of vulnerability are rare because available frameworks are complex and lack guidance for dealing with data limitations and integrating across scales and disciplines. This paper describes a semi-quantitative method for assessing vulnerability to climate change that integrates socio-ecological factors to address management objectives and support decision-making. The method applies a framework first adopted by the Intergovernmental Panel on Climate Change and uses a structured 10-step process. The scores for each framework element are normalized and multiplied to produce a vulnerability score and then the assessed components are ranked from high to low vulnerability. Sensitivity analyses determine which indicators most influence the analysis and the resultant decision-making process so data quality for these indicators can be reviewed to increase robustness. Prioritisation of components for conservation considers other economic, social and cultural values with vulnerability rankings to target actions that reduce vulnerability to climate change by decreasing exposure or sensitivity and/or increasing adaptive capacity. This framework provides practical decision-support and has been applied to marine ecosystems and fisheries, with two case applications provided as examples: (1) food security in Pacific Island nations under climate-driven fish declines, and (2) fisheries in the Gulf of Carpentaria, northern Australia. The step-wise process outlined here is broadly applicable and can be undertaken with minimal resources using existing data, thereby having great potential to inform adaptive natural resource management in diverse locations.
Resumo:
This research work analyzes human behavior in complex situations and explains how decisions makers act in ambiguous situations. The objective of this research work is to study the sunk cost effect and the completion percentage effect of an investment project in a decision-making process. This research work uses a “retrospective rationality” approach to justify irrational behaviors such as the sunk cost effect, the completion percentage effect of an investment project and the irrational escalation since decision-makers are repeatedly affected by the decisions on past irreversible investments. This research work evaluates three sunk cost levels, and three completion percentage levels of an investment project, besides three neutral situations in a business environment and a personal decision situation. Graduate students in three Portuguese Management Schools responded to the questionnaires. Model results show that the value of resources invested is crucial for understanding the students’ rational behavior, who participated in this research work. These results disclose statistical evidence that the information on sunk costs and completion percentage of an investment project determines human behavior under irrational escalation in ambiguous situations. As a consequence, decision makers have the opportunity to interpret their decisions, since the scenarios do not allow a unique definition of rational choice, it is not correct to judge the irrational decision makers that decide to continue to invest in ambiguous situations. Keywords: Human Behavior, Sunk costs Effect, Completion Percentage Effect of an Investment Project, Irrational Escalation, Ambiguous Situations.
Resumo:
There have only been a small number of applications of consumer decision set theory to holiday destination choice, and these studies have tended to rely on a single cross sectional snapshot of research participants’ stated preferences. Very little has been reported on the relationship between stated destination preferences and actual travel, or changes in decision set composition over time. The paper presents a rare longitudinal examination of destination decision sets, in the context of short break holidays by car in Queensland, Australia. Two questionnaires were administered, three months apart. The first identified destination preferences while the second examined actual travel and revisited destination preferences. In relation to the conference theme, there was very little change in consumer preferences towards the competitive set of destinations over the three month period. A key implication for the destination of interest, which, in an attempt to change market perceptions, launched a new brand campaign during the period of the project, is that a long term investment in a consistent brand message will be required to change market perceptions. The results go some way to support the proposition that the positioning of a destination into a consumer’s decision set represents a source of competitive advantage.