961 resultados para Stations agronomiques
Resumo:
A study of the polarimetric backscattering response of newly formed sea ice types under a large assortment of surface coverage was conducted using a ship-based C-band polarimetric radar system. Polarimetric backscattering results and physical data for 40 stations during the fall freeze-up of 2003, 2006, and 2007 are presented. Analysis of the copolarized correlation coefficient showed its sensitivity to both sea ice thickness and surface coverage and resulted in a statistically significant separation of ice thickness into two regimes: ice less than 6 cm thick and ice greater than 8 cm thick. A case study quantified the backscatter of a layer of snow infiltrated frost flowers on new sea ice, showing that the presence of the old frost flowers can enhance the backscatter by more than 6 dB. Finally, a statistical analysis of a series of temporal-spatial measurements over a visually homogeneous frost-flower-covered ice floe identified temperature as a significant, but not exclusive, factor in the backscattering measurements.
Resumo:
We analyze 2006-2009 data from four continuous Global Positioning System (GPS) receivers located between 5 and 150 km from the glacier Jakobshavn Isbrae, West Greenland. The GPS stations were established on bedrock to determine the vertical crustal motion due to the unloading of ice from Jakobshavn Isbrae. All stations experienced uplift, but the uplift rate at Kangia North, only 5 km from the glacier front, was about 10 mm/yr larger than the rate at Ilulissat, located only ~45 km further away. This suggests that most of the uplift is due to the unloading of the Earth's surface as Jakobshavn thins and loses mass. Our estimate of Jakobshavn's contribution to uplift rates at Kangia North and Ilulissat are 14.6 ± 1.7 mm/yr and 4.9 ± 1.1 mm/yr, respectively. The observed rates are consistent with a glacier thinning model based on repeat altimeter surveys from NASA's Airborne Topographic Mapper (ATM), which shows that Jakobshavn lost mass at an average rate of 22 ± 2 km**3/yr between 2006 and 2009. At Kangia North and Ilulissat, the predicted uplift rates computed using thinning estimates from the ATM laser altimetry are 12.1 ± 0.9 mm/yr and 3.2 ± 0.3 mm/yr, respectively. The observed rates are slightly larger than the predicted rates. The fact that the GPS uplift rates are much larger closer to Jakobshavn than further away, and are consistent with rates inferred using the ATM-based glacier thinning model, shows that GPS measurements of crustal motion are a potentially useful method for assessing ice-mass change models.