952 resultados para Stability and convergence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the pseudopotential plane-wave method and the local-density-functional theory, this paper studies energetics, stress-strain relation, stability, and ideal strength of beta-SiC under various loading modes, where uniform uniaxial extension and tension and biaxial proportional extension are considered along directions [001] and [111]. The lattice constant, elastic constants, and moduli of equilibrium state are calculated and the results agree well with the experimental data. As the four SI-C bonds along directions [111], [(1) over bar 11], [11(1) over bar] and [111] are not the same under the loading along [111], internal relaxation and the corresponding internal displacements must be considered. We find that, at the beginning of loading, the effect of internal displacement through the shuffle and glide plane diminishes the difference among the four Si-C bonds lengths, but will increase the difference at the subsequent loading, which will result in a crack nucleated on the {111} shuffle plane and a subsequently cleavage fracture. Thus the corresponding theoretical strength is 50.8 GPa, which agrees well with the recent experiment value, 53.4 GPa. However, with the loading along [001], internal relaxation is not important for tetragonal symmetry. Elastic constants during the uniaxial tension along [001] are calculated. Based on the stability analysis with stiffness coefficients, we find that the spinodal and Born instabilities are triggered almost at the same strain, which agrees with the previous molecular-dynamics simulation. During biaxial proportional extension, stress and strength vary proportionally with the biaxial loading ratio at the same longitudinal strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphite-flake reinforced Cu47Ti34Zr11 Ni-8 bulk metallic glass matrix composite was fabricated by water-cooled copper mould cast. Most of the graphite flakes still keep unreacted and distribute uniformly in the amorphous matrix except that some reactive wetting occurs by the formation of TiC particles around the flakes. It reveals that the presence of graphite flakes does not affect the onset of the glass transition temperature, crystallization reaction and liquidus of the metallic glass. The resulting material shows obvious serrated flow and higher fracture strength under room temperature compressive load, comparing with the monolithic bulk metallic glass (BMG). Three types of interaction between the shear bands and graphite flakes, namely, shear band termination, shear bands branching and new shear bands formation near the graphite flakes can be observed by quasi-static uniaxial compression test and bonded interface technique through Vickers indentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

波浪作用下海床的稳定性与液化分析是海底管线、防波堤和海洋平台设计中必须仔细考虑的问题。推荐了一个循环荷载作用下土体的弹塑性实用本构模型,并给出了一种粉土的模型参数。该模型直接根据初始应力状态和循环应力的大小与作用时间计算土体的塑性应变增量,在有限元计算中不需要引入弹塑性矩阵。采用Biot理论和有限单元法,计算了粉土海床在波浪作用下的孔隙水压力和有效应力的变化过程,并对海床的稳定性和液化进行了分析。计算结果与波浪槽实验反映的规律是相符的。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of Casimir and van der Waals forces on the nano-electromechanical systems (NEMS) electrostatic torsional varactor are studied. A one degree of freedom, the torsional angle, is adopted, and the bifurcation behaviour of the NEMS torsional varactor is investigated. There are two bifurcation points, one of which is a Hopf bifurcation point and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit when meeting the unstable saddle point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a straight cylindrical duct with a steady subsonic axial flow and a reacting boundary (e.g. an acoustic lining). The wave modes are separated into ordinary acoustic duct modes, and surface modes confined to a small neighbourhood of the boundary. Many researchers have used a mass-spring-damper boundary model, for which one surface mode has previously been identified as a convective instability; however, we show the stability analysis used in such cases to be questionable. We investigate instead the stability of the surface modes using the Briggs-Bers criterion for a Flügge thin-shell boundary model. For modest frequencies and wavenumbers the thin-shell has an impedance which is effectively that of a mass-spring-damper, although for the large wavenumbers needed for the stability analysis the thin-shell and mass-spring-damper impedances diverge, owing to the thin shell's bending stiffness. The thin shell model may therefore be viewed as a regularization of the mass-spring-damper model which accounts for nonlocally-reacting effects. We find all modes to be stable for realistic thin-shell parameters, while absolute instabilities are demonstrated for extremely thin boundary thicknesses. The limit of vanishing bending stiffness is found to be a singular limit, yielding absolute instabilities of arbitrarily large temporal growth rate. We propose that the problems with previous stability analyses are due to the neglect of something akin to bending stiffness in the boundary model. Our conclusion is that the surface mode previously identified as a convective instability may well be stable in reality. Finally, inspired by Rienstra's recent analysis, we investigate the scattering of an acoustic mode as it encounters a sudden change from a hard-wall to a thin-shell boundary, using a Wiener-Hopf technique. The thin-shell is considered to be clamped to the hard-wall. The acoustic mode is found to scatter into transmitted and reflected acoustic modes, and surface modes strongly linked to the solid waves in the boundary, although no longitudinal or transverse waves within the boundary are excited. Examples are provided that demonstrate total transmission, total reflection, and a combination of the two. This thin-shell scattering problem is preferable to the mass-spring-damper scattering problem presented by Rienstra, since the thin-shell problem is fully determined and does not need to appeal to a Kutta-like condition or the inclusion of an instability in order to avoid a surface-streamline cusp at the boundary change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dependence of microstructure and thermal stability on Fe content of bulk Nd60Al10Ni10Cu20-xFex (0 less than or equal to x less than or equal to 20) metallic glasses is investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high-resolution transmission electron micrograph (HRTEM). All samples exhibit typical amorphous feature under the detect limit of XRD, however, HRTEM results show that the microstructure of Nd60Al10Ni10Cu20-xFex alloys changes from a homogeneous amorphous phase to a composite structure consisting of clusters dispersed in amorphous matrix by increasing Fe content. Dynamic mechanical properties of these alloys with controllable microstructure are studied, expressed via storage modulus, the loss modulus and the mechanical damping. The results reveal that the storage modulus of the alloy without Fe added shows a distinct decrease due to the main a relaxation. This decrease weakens and begins at a higher temperature with increasing Fe content. The mechanism of the effect of Fe addition on the microstructure and thermal stability in this system is discussed in terms of thermodynamics viewpoints. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of Casimir and van der Waals forces on the nano-electromechanical systems (NEMS) electrostatic torsional varactor are studied. A one degree of freedom, the torsional angle, is adopted, and the bifurcation behaviour of the NEMS torsional varactor is investigated. There are two bifurcation points, one of which is a Hopf bifurcation point and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit when meeting the unstable saddle point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inlets which require frequent channel dredging due to gradual shoaling, exhibit migration, or shoal up during storms, are in general unstable and pose a problem to the engineer. This problem of inlet stability is a complex one, because of the rather large number of variables that go into defining stability. The reference here is to inlets on sandy coasts only, because the absence of sand or similar sedimentary material the problem does not arise. Shell is also found in varying proportions with sand. Some of this is. new, whereas in some areas it is ancient reworked material whose size distribution is close to that of the sand with which it is associated. (PDF has 24 pages.)