991 resultados para Sport Climbing mini artificial wall
Resumo:
This paper presents the perspectives from three Aboriginal women on body image, sport and physical activity within Australian contemporary society. It draws on a range of literature along with artworks from visual artist Pamela Croft.
Resumo:
In recent years there has been widespread interest in patterns, perhaps provoked by a realisation that they constitute a fundamental brain activity and underpin many artificial intelligence systems. Theorised concepts of spatial patterns including scale, proportion, and symmetry, as well as social and psychological understandings are being revived through digital/parametric means of visualisation and production. The effect of pattern as an ornamental device has also changed from applied styling to mediated dynamic effect. The interior has also seen patterned motifs applied to wall coverings, linen, furniture and artefacts with the effect of enhancing aesthetic appreciation, or in some cases causing psychological and/or perceptual distress (Rodemann 1999). ----- ----- While much of this work concerns a repeating array of surface treatment, Philip Ball’s The Self- Made Tapestry: Pattern Formation in Nature (1999) suggests a number of ways that patterns are present at the macro and micro level, both in their formation and disposition. Unlike the conventional notion of a pattern being the regular repetition of a motif (geometrical or pictorial) he suggests that in nature they are not necessarily restricted to a repeating array of identical units, but also include those that are similar rather than identical (Ball 1999, 9). From his observations Ball argues that they need not necessarily all be the same size, but do share similar features that we recognise as typical. Examples include self-organized patterns on a grand scale such as sand dunes, or fractal networks caused by rivers on hills and mountains, through to patterns of flow observed in both scientific experiments and the drawings of Leonardo da Vinci.
Resumo:
The concept of organismic asymmetry refers to an inherent bias for seeking explanations of human performance and behaviour based on internal mechanisms and referents. A weakness in this tendency is a failure to consider the performer–environment relationship as the relevant scale of analysis. In this paper we elucidate the philosophical roots of the bias and discuss implications of organismic asymmetry for sport science and performance analysis, highlighting examples in psychology, sports medicine and biomechanics.
Resumo:
It is likely that effective application of cell-laden implants for cartilage defects depends on retention of implanted cells and interaction between implanted and host cells. The objectives of this study were to characterize stratified cartilaginous constructs seeded sequentially with superficial (S) and middle (M) chondrocyte subpopulations labelled with fluorescent cell tracking dye PKH26 (*) and determine the degree to which these stratified cartilaginous constructs maintain their architecture in vivo after implantation in mini-pigs for 1 week. Alginate-recovered cells were seeded sequentially to form stratified S*/M (only S cells labelled) and S*/M* (both S and M cells labelled) constructs. Full-thickness defects (4 mm diameter) were created in the patellofemoral groove of adult Yucatan mini-pigs and filled with portions of constructs or left empty. Constructs were characterized biochemically, histologically, and biomechanically, and stratification visualized and quantified, before and after implant. After 1 week, animals were sacrificed and implants retrieved. After 1 week in vivo, glycosaminoglycan and collagen content of constructs remained similar to that at implant, whereas DNA content increased. Histological analyses revealed features of an early repair response, with defects filled with tissues containing little matrix and abundant cells. Some implanted (PKH26-labeled) cells persisted in the defects, although constructs did not maintain a stratified organization. Of the labelled cells, 126 +/- 38% and 32 +/- 8% in S*/M and S*/M* constructs, respectively, were recovered. Distribution of labelled cells indicated interactions between implanted and host cells. Longer-term in vivo studies will be useful in determining whether implanted cells are sufficient to have a positive effect in repair.
Resumo:
Constructing buildings using slip formed load bearing wall panels is becoming increasingly popular in Sri Lanka due to several advantages; low cost, environmental friendliness and rapid construction technique. These wall panels are already successfully implemented in many low rise buildings. However, the seismic capacities of these buildings have not been properly studied. Few seismic activities reported in Sri Lanka have not caused severe structural damage, but predictions can not be made as to whether this will continue to be the case in the future. This highlights the need to study the seismic capacity of buildings constructed in slip formed load bearing wall panels. This paper presents a study of the seismic capacity of the existing medium rise building.
Resumo:
Recently, a constraints- led approach has been promoted as a framework for understanding how children and adults acquire movement skills for sport and exercise (see Davids, Button & Bennett, 2008; Araújo et al., 2004). The aim of a constraints- led approach is to identify the nature of interacting constraints that influence skill acquisition in learners. In this chapter the main theoretical ideas behind a constraints- led approach are outlined to assist practical applications by sports practitioners and physical educators in a non- linear pedagogy (see Chow et al., 2006, 2007). To achieve this goal, this chapter examines implications for some of the typical challenges facing sport pedagogists and physical educators in the design of learning programmes.
Resumo:
This project was a step forward in the examination and identification of key variables on the perception, decision making and action of team sport athletes through theoretical insights provided by the ecological dynamics perspective. The methodology drew on experiential knowledge of elite coaches to drive further empirical investigation into the specific task, environmental and personal constraints that shape the behaviour of athletes in specific performance contexts. The thesis has provided an effective rationale for further investigation into the emergent perception, decision making and action demanded of athletes in these unpredictable, fluent, fast-paced environments.
Resumo:
Autonomous development of sensorimotor coordination enables a robot to adapt and change its action choices to interact with the world throughout its lifetime. The Experience Network is a structure that rapidly learns coordination between visual and haptic inputs and motor action. This paper presents methods which handle the high dimensionality of the network state-space which occurs due to the simultaneous detection of multiple sensory features. The methods provide no significant increase in the complexity of the underlying representations and also allow emergent, task-specific, semantic information to inform action selection. Experimental results show rapid learning in a real robot, beginning with no sensorimotor mappings, to a mobile robot capable of wall avoidance and target acquisition.
Resumo:
Use of ball projection machines in the acquisition of interceptive skill has recently been questioned. The use of projection machines in developmental and elite fast ball sports programmes is not a trivial issue, since they play a crucial role in reducing injury incidence in players and coaches. A compelling challenge for sports science is to provide theoretical principles to guide how and when projection machines might be used for acquisition of ball skills and preparation for competition in developmental and elite sport performance programmes. Here, we propose how principles from an ecological dynamics theoretical framework could be adopted by sports scientists, pedagogues and coaches to underpin the design of interventions, practice and training tasks, including the use of hybrid video-projection technologies. The assessment of representative learning design during practice may provide ways to optimize developmental programmes in fast ball sports and inform the principled use of ball projection machines.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
Project as a Capstone Learning Unit: Courses of the QUT Faculty of BEE seek to enable students to practice as professionals in their respective disciplines. A major part of such practice is the instigation, management,monitoring, and reporting on an urban development project. This unit offers the student a capstone learning experience near the end of their fourth year of undergraduate study. Expose the student to a set of integrated activities, each building upon the preceding, and culminating in a 'completed' project. Students apply skills and knowledge attained earlier in the course and develop new abilities for application to a real-world problem, industry or research based, to simulate the design, development and management of a project solution. These 10-12minute seminar presentations comprise the mini-conference event that are of benefit to the wider surveying and spatial science industry.
Resumo:
Project as a Capstone Learning Unit: Courses of the QUT Faculty of BEE seek to enable students to practice as professionals in their respective disciplines. A major part of such practice is the instigation, management,monitoring, and reporting on an urban development project. This unit offers the student a capstone learning experience near the end of their fourth year of undergraduate study. Expose the student to a set of integrated activities, each building upon the preceding, and culminating in a 'completed' project. Students apply skills and knowledge attained earlier in the course and develop new abilities for application to a real-world problem, industry or research based, to simulate the design, development and management of a project solution. These 10-12minute seminar presentations comprise the mini-conference event that are of benefit to the wider surveying and spatial science industry. Additionally Includes MAPMYTOWN 2010, Bell Darling Downs, summary of QUT contributions.