991 resultados para Spontaneous generation
Resumo:
Australia’s efforts to transition to a low-emissions economy have stagnated following the successive defeats of the Carbon Pollution Reduction Scheme. This failure should not, however, be regarded as the end of Australia’s efforts to make this transition. In fact, the opportunity now exists for Australia to refine its existing arrangements to enable this transition to occur more effectively. The starting point for this analysis is the legal arrangements applying to the electricity generation sector, which is the largest sectoral emitter of anthropogenic greenhouse gas emissions in Australia. Without an effective strategy to mitigate this sector’s contribution to anthropogenic climate change, it is unlikely that Australia will be able to transition towards a low-emissions economy. It is on this basis that this article assesses the dominant national legal arrangement – the Renewable Energy Target – underpinning the electricity generation sector's efforts to become a low-emissions sector.
Resumo:
Smart matrices are required in bone tissueengineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bioartificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.
Resumo:
Studying the rate of cell migration provides insight into fundamental cell biology as well as a tool to assess the functionality of synthetic surfaces and soluble environments used in tissue engineering. The traditional tools used to study cell migration include the fence and wound healing assays. In this paper we describe the development of a microchannel based device for the study of cell migration on defined surfaces. We demonstrate that this device provides a superior tool, relative to the previously mentioned assays, for assessing the propagation rate of cell wave fronts. The significant advantage provided by this technology is the ability to maintain a virgin surface prior to the commencement of the cell migration assay. Here, the device is used to assess rates of mouse fibroblasts (NIH 3T3) and human osteosarcoma (SaOS2) cell migration on surfaces functionalized with various extracellular matrix proteins as a demonstration that confining cell migration within a microchannel produces consistent and robust data. The device design enables rapid and simplistic assessment of multiple repeats on a single chip, where surfaces have not been previously exposed to cells or cellular secretions.
Resumo:
With the rapid increase in electrical energy demand, power generation in the form of distributed generation is becoming more important. However, the connections of distributed generators (DGs) to a distribution network or a microgrid can create several protection issues. The protection of these networks using protective devices based only on current is a challenging task due to the change in fault current levels and fault current direction. The isolation of a faulted segment from such networks will be difficult if converter interfaced DGs are connected as these DGs limit their output currents during the fault. Furthermore, if DG sources are intermittent, the current sensing protective relays are difficult to set since fault current changes with time depending on the availability of DG sources. The system restoration after a fault occurs is also a challenging protection issue in a converter interfaced DG connected distribution network or a microgrid. Usually, all the DGs will be disconnected immediately after a fault in the network. The safety of personnel and equipment of the distribution network, reclosing with DGs and arc extinction are the major reasons for these DG disconnections. In this thesis, an inverse time admittance (ITA) relay is proposed to protect a distribution network or a microgrid which has several converter interfaced DG connections. The ITA relay is capable of detecting faults and isolating a faulted segment from the network, allowing unfaulted segments to operate either in grid connected or islanded mode operations. The relay does not make the tripping decision based on only the fault current. It also uses the voltage at the relay location. Therefore, the ITA relay can be used effectively in a DG connected network in which fault current level is low or fault current level changes with time. Different case studies are considered to evaluate the performance of the ITA relays in comparison to some of the existing protection schemes. The relay performance is evaluated in different types of distribution networks: radial, the IEEE 34 node test feeder and a mesh network. The results are validated through PSCAD simulations and MATLAB calculations. Several experimental tests are carried out to validate the numerical results in a laboratory test feeder by implementing the ITA relay in LabVIEW. Furthermore, a novel control strategy based on fold back current control is proposed for a converter interfaced DG to overcome the problems associated with the system restoration. The control strategy enables the self extinction of arc if the fault is a temporary arc fault. This also helps in self system restoration if DG capacity is sufficient to supply the load. The coordination with reclosers without disconnecting the DGs from the network is discussed. This results in increased reliability in the network by reduction of customer outages.
Resumo:
Novel profluorescent nitroxides bearing a triazole linker between the coumarin fluorophore and an isoindoline nitroxide were prepared in good yields using the coppercatalyzed azide�alkyne 1,3-dipolar cycloaddition reaction (CuAAC). Nitroxides containing 7-hydroxy and 7-diethylamino substitution on their coumarin rings displayed significant fluorescence suppression, and upon reaction with methyl radicals, normal fluorescence emission was returned. The fluorescence emission for the 7-hydroxycoumarin nitroxide and its diamagnetic analogue was found to be strongly influenced by pH with maximal fluorescence emission achieved in basic solution. Solvent polarity was also shown to affect fluorescence emission. The significant difference in fluorescence output between the nitroxides and their corresponding diamagnetic analogues makes these compounds ideal tools for monitoring processes involving free-radical species.
Resumo:
Spontaneous facial expressions differ from posed ones in appearance, timing and accompanying head movements. Still images cannot provide timing or head movement information directly. However, indirectly the distances between key points on a face extracted from a still image using active shape models can capture some movement and pose changes. This information is superposed on information about non-rigid facial movement that is also part of the expression. Does geometric information improve the discrimination between spontaneous and posed facial expressions arising from discrete emotions? We investigate the performance of a machine vision system for discrimination between posed and spontaneous versions of six basic emotions that uses SIFT appearance based features and FAP geometric features. Experimental results on the NVIE database demonstrate that fusion of geometric information leads only to marginal improvement over appearance features. Using fusion features, surprise is the easiest emotion (83.4% accuracy) to be distinguished, while disgust is the most difficult (76.1%). Our results find different important facial regions between discriminating posed versus spontaneous version of one emotion and classifying the same emotion versus other emotions. The distribution of the selected SIFT features shows that mouth is more important for sadness, while nose is more important for surprise, however, both the nose and mouth are important for disgust, fear, and happiness. Eyebrows, eyes, nose and mouth are important for anger.
Resumo:
As the popularity of video as an information medium rises, the amount of video content that we produce and archive keeps growing. This creates a demand for shorter representations of videos in order to assist the task of video retrieval. The traditional solution is to let humans watch these videos and write textual summaries based on what they saw. This summarisation process, however, is time-consuming. Moreover, a lot of useful audio-visual information contained in the original video can be lost. Video summarisation aims to turn a full-length video into a more concise version that preserves as much information as possible. The problem of video summarisation is to minimise the trade-off between how concise and how representative a summary is. There are also usability concerns that need to be addressed in a video summarisation scheme. To solve these problems, this research aims to create an automatic video summarisation framework that combines and improves on existing video summarisation techniques, with the focus on practicality and user satisfaction. We also investigate the need for different summarisation strategies in different kinds of videos, for example news, sports, or TV series. Finally, we develop a video summarisation system based on the framework, which is validated by subjective and objective evaluation. The evaluation results shows that the proposed framework is effective for creating video skims, producing high user satisfaction rate and having reasonably low computing requirement. We also demonstrate that the techniques presented in this research can be used for visualising video summaries in the form web pages showing various useful information, both from the video itself and from external sources.
Resumo:
This project focused on the first application of the copper catalyzed azide alkyne cycloaddition reaction for the generation of novel profluorescent systems. Through this approach four novel profluorescent nitroxides were prepared both rapidly and in good yield from coumarin and nitroxide CuAAC coupling partners. Specifically, 7-hydroxy, 7-diethylamino, 6-bromo and unsubstituted coumarin analogues bearing an azide group in the 3-position were prepared and conjugatively joined to an alkyne isoindoline nitroxide previously reported by our group. To explore the impact of the nitroxide moiety on the fluorescence of these systems, methoxyamine analogues of the corresponding nitroxide analogues were prepared. Spectrophotometric analysis of these methoxyamine analogues revealed that the aromatic systems possessed high quantum yields. However, the quantum yield efficiency was found to be dependent on the presence of electron donating substituents in the 7-position of the coumarin motif, which enhanced the charge-transfer character of the system. Furthermore, spectrophotometric analysis of nitroxide analogues demonstrated that the triazole effectively mediated fluorophore-nitroxide communication, as evidenced by the low quantum yield values of the nitroxide analogues. These results suggest that this technique can be used to conjugatively join any azide bearing fluorescent system with the key alkyne isoindoline coupling partner allowing for the rapid generation of diverse profluorescent systems.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.
Resumo:
Protection of a distribution network in the presence of distributed generators (DGs) using overcurrent relays is a challenging task due to the changes in fault current levels and reverse power flow. Specifically, in the presence of current limited converter interfaced DGs, overcurrent relays may fail to isolate the faulted section either in grid connected or islanded mode of operation. In this paper, a new inverse type relay is presented to protect a distribution network, which may have several DG connections. The new relay characteristic is designed based on the measured admittance of the protected line. The relay is capable of detecting faults under changing fault current levels. The relay performance is evaluated using PSCAD simulation and laboratory experiments.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cold. An internal heat generation is also considered which is dependent of the fluid temperature. The governing equations are solved numerically by finite element method. The Prandtl number of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number are considered as 0.5 and 105 respectively. The effect of the porosity of the medium and heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
The Generation Workshop Program 2010, a part of the Queensland Government Unlimited: Designing for the Asia Pacific Event Program, consisted of two one-day intensive design thinking workshops run on October 7-8, 2011 at The Edge, State Library of Queensland, for 100 senior secondary students and 20 secondary teachers self-selected from the subject areas of Visual Art, Graphics and Industrial Technology and Design. Participants were drawn from a database of Brisbane and regional Queensland private and public schools from the goDesign and Living City Workshop Programs. The workshop aimed to facilitate awareness in young people of the role of design in society and the value of design thinking skills in solving complex problems facing the Asia Pacific Region, and to inspire the generation of strategies for our future cities. It also aimed to encourage the collaboration of professional designers with secondary schools to inspire post-secondary pathways and idea generation for education. Inspired by international and national speakers Bunker Roy (Barefoot College) and Hael Kobayashi (Associate Producer on "Happy Feet" film for Australia's Animal Logic), the Unlimited showcase exhibition Make Change: Design Thinking in Action and ‘Idea Starters’/teaching resources provided, students worked with a teacher in ten random teams, to generate optimistic strategies for the Ideal City of tomorrow, each considering a theme – Food, Water, Transport, Ageing, Growth, Employment, Shelter, Health, Education and Energy. Each team of 6 was led by a professional designer (from the discipline of architecture, interior design, industrial design, urban design, graphic design or landscape architecture) who was a catalyst for driving the student creative thinking process. Assisted by illustrators, the teams prepared a visual presentation of their idea from art materials provided. The workshop culminated in a video-taped interactive design chatter to the larger group, which will be utilised as a toolkit and praxis for teachers as part of the State Library of Queensland Design Minds Project. Photos of student design work were published on the Unlimited website.
Resumo:
There is widespread argument that traditional organisations and industries with a predominantly older workforce who are not using computers as an integral part of their work, are unlikely to embrace the opportunities afforded by e-learning. However, the challenge remains to engage a younger generation of learners who seem comfortable learning with technology, whilst not alienating those older learners who may prefer to learn in more traditional ways. This paper analyses data from five case organisations within the Australian rail industry to identify how the potential of e-learning can be realised whilst acknowledging the technological divide between younger and older workers.