839 resultados para Spectrum sensing
Resumo:
An assessment of the bi-directional reflectance distribution function (BRDF) of corals with different morphologies was undertaken using hyperspectral reflectance measurements. The highest variance in reflectance obtained at different viewing angles was found for the open branching Acropora colony, possibly attributed to branch orientation and internal shadow distribution. Spectral separation within and between features at the nominated sensor-viewing angles was greatest in the near infrared portion of the spectrum. The analysis of coral reef bi-directional reflectance properties and degree of internal shadowing holds potential for future assessment and information extraction relating to coral structural characteristics.
Resumo:
Although extended-spectrum beta-lactamases (ESBLs) hydrolyze cephalosporin antibiotics, some ESBL-producing organisms are not resistant to all cephalosporins when tested in vitro. Some authors have suggested that screening klebsiellae or Escherichia coli for ESBL production is not clinically necessary, and when most recently surveyed the majority of American clinical microbiology laboratories did not make efforts to detect ESBLs, We performed a prospective, multinational study of Klebsiella pneumoniae bacteremia and identified 10 patients who were treated for ESBL-producing K. pneumoniae bacteremia with cephalosporins and whose infecting organisms were not resistant in vitro to the utilized cephalosporin. In addition, we reviewed 26 similar cases of severe infections which had previously been reported. Of these 36 patients, 4 had to be excluded from analysis. Of the remaining 32 patients, 100% (4 of 4) patients experienced clinical failure when MICs of the cephalosporin used for treatment were in the intermediate range and 54% (15 of 28) experienced failure when MICs of the cephalosporin used for treatment were in the susceptible range, Thus, it is clinically important to detect ESBL production by klebsiellae or E, coli even when cephalosporin MICs are in the susceptible range (less than or equal to 8 mug/ml) and to report ESBL-producing organisms as resistant to aztreonam and all cephalosporins (with the exception of cephamycins).
Resumo:
We investigate the fluorescence spectrum of a two-level atom driven by a multiple amplitude-modulated field. The driving held is modeled as a polychromatic field composed of a strong central (resonant) component and a large number of symmetrically detuned sideband fields displaced from the central component by integer multiples of a constant detuning. Spectra obtained here differ qualitatively from those observed for a single pair of modulating fields [B. Blind, P.R. Fontana, and P. Thomann, J. Phys. B 13, 2717 (1980)]. In the case of a small number of the modulating fields, a multipeaked spectrum is obtained with the spectral features located at fixed frequencies that are independent of the number of modulating fields and their Rabi frequencies. As the number of the modulating fields increases, the spectrum ultimately evolves to the well-known Mellow triplet with the sidebands shifted from the central component by an effective Rabi frequency whose magnitude depends on the initial relative phases of the components of the driving held. For equal relative phases, the effective Rabi frequency of the driving field can be reduced to zero resulting in the disappearance of fluorescence spectrum, i.e., the atom can stop interacting with the field. When the central component and the modulating fields are 180 degrees out of phase, the spectrum retains its triplet structure with the sidebands located at frequencies equal to the sum of the Rabi frequencies of the component of the driving field. Moreover, we shaw that the frequency of spontaneous emission can be controlled and switched from one frequency to another when the Rabi frequency or initial phase of the modulating fields are varied.
Resumo:
A pairing model for nucleons, introduced by Richardson in 1966, which describes proton-neutron pairing as well as proton-proton and neutron-neutron pairing, is re-examined in the context of the quantum inverse scattering method. Specifically, this shows that the model is integrable by enabling the explicit construction of the conserved operators. We determine the eigenvalues of these operators in terms of the Bethe ansatz, which in turn leads to an expression for the energy eigenvalues of the Hamiltonian.