980 resultados para Spectral Method
Resumo:
Objective-To evaluate pulsed-wave Doppler spectral parameters as a method for distinguishing between neoplastic and inflammatory peripheral lymphadenopathy in dogs. Sample Population-40 superficial lymph nodes from 33 dogs with peripheral lymphadenopathy. Procedures-3 Doppler spectral tracings were recorded from each node. Spectral Doppler analysis including assessment of the resistive index, peak systolic velocity-to-end diastolic velocity (S:D) ratio, diastolic notch velocity-to-peak systolic velocity (N:S) ratio, and end diastolic velocity-to-diastolic notch velocity ratio was performed for each tracing. Several calculation methods were used to determine the Doppler indices for each lymph node. After the ultrasonographic examination, fine needle aspirates or excisional biopsy specimens of the examined lymph nodes were obtained, and lymphadenopathy was classified as either inflammatory or neoplastic (lymphomatous or metastatic) via cytologic or histologic examination. Results of Doppler analysis were compared with cytologic or histopathologic findings. Results-The Doppler index with the highest diagnostic accuracy was the S:D ratio calculated from the first recorded tracing; a cutoff value of 3.22 yielded sensitivity of 91%, specificity of 100%, and negative predictive value of 89% for detection of neoplasia. Overall diagnostic accuracy was 95%. At a sensitivity of 100%, the most accurate index was the N:S ratio calculated from the first recorded tracing; a cutoff value of 0.45 yielded specificity of 67%, positive predictive value of 81%, and overall diagnostic accuracy of 86.5%. Conclusions and Clinical Relevance-Results suggested that noninvasive Doppler spectral analysis may be useful in the diagnosis of neoplastic versus inflammatory peripheral lymphadenopathy in dogs.
Resumo:
NAFLD (non-alcoholic fatty liver disease) and NASH (non-alcoholic steatohepatitis) are of increasing importance, both in connection with insulin resistance and with the development of liver cirrhosis. Histological samples are still the 'gold standard' for diagnosis; however, because of the risks of a liver biopsy, non-invasive methods are needed. MAS (magic angle spinning) is a special type of NMR which allows characterization of intact excised tissue without need for additional extraction steps. Because clinical MRI (magnetic resonance imaging) and MRS (magnetic resonance spectroscopy) are based on the same physical principle as NMR, translational research is feasible from excised tissue to non-invasive examinations in humans. In the present issue of Clinical Science, Cobbold and co-workers report a study in three animal strains suffering from different degrees of NAFLD showing that MAS results are able to distinguish controls, fatty infiltration and steatohepatitis in cohorts. In vivo MRS methods in humans are not obtainable at the same spectral resolution; however, know-how from MAS studies may help to identify characteristic changes in crowded regions of the magnetic resonance spectrum.
Resumo:
We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T2.33TC.
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
We present a novel approach for the reconstruction of spectra from Euclidean correlator data that makes close contact to modern Bayesian concepts. It is based upon an axiomatically justified dimensionless prior distribution, which in the case of constant prior function m(ω) only imprints smoothness on the reconstructed spectrum. In addition we are able to analytically integrate out the only relevant overall hyper-parameter α in the prior, removing the necessity for Gaussian approximations found e.g. in the Maximum Entropy Method. Using a quasi-Newton minimizer and high-precision arithmetic, we are then able to find the unique global extremum of P[ρ|D] in the full Nω » Nτ dimensional search space. The method actually yields gradually improving reconstruction results if the quality of the supplied input data increases, without introducing artificial peak structures, often encountered in the MEM. To support these statements we present mock data analyses for the case of zero width delta peaks and more realistic scenarios, based on the perturbative Euclidean Wilson Loop as well as the Wilson Line correlator in Coulomb gauge.
Resumo:
Several lake ice phenology studies from satellite data have been undertaken. However, the availability of long-term lake freeze-thaw-cycles, required to understand this proxy for climate variability and change, is scarce for European lakes. Long time series from space observations are limited to few satellite sensors. Data of the Advanced Very High Resolution Radiometer (AVHRR) are used in account of their unique potential as they offer each day global coverage from the early 1980s expectedly until 2022. An automatic two-step extraction was developed, which makes use of near-infrared reflectance values and thermal infrared derived lake surface water temperatures to extract lake ice phenology dates. In contrast to other studies utilizing thermal infrared, the thresholds are derived from the data itself, making it unnecessary to define arbitrary or lake specific thresholds. Two lakes in the Baltic region and a steppe lake on the Austrian–Hungarian border were selected. The later one was used to test the applicability of the approach to another climatic region for the time period 1990 to 2012. A comparison of the extracted event dates with in situ data provided good agreements of about 10 d mean absolute error. The two-step extraction was found to be applicable for European lakes in different climate regions and could fill existing data gaps in future applications. The extension of the time series to the full AVHRR record length (early 1980 until today) with adequate length for trend estimations would be of interest to assess climate variability and change. Furthermore, the two-step extraction itself is not sensor-specific and could be applied to other sensors with equivalent near- and thermal infrared spectral bands.
Resumo:
Every x-ray attenuation curve inherently contains all the information necessary to extract the complete energy spectrum of a beam. To date, attempts to obtain accurate spectral information from attenuation data have been inadequate.^ This investigation presents a mathematical pair model, grounded in physical reality by the Laplace Transformation, to describe the attenuation of a photon beam and the corresponding bremsstrahlung spectral distribution. In addition the Laplace model has been mathematically extended to include characteristic radiation in a physically meaningful way. A method to determine the fraction of characteristic radiation in any diagnostic x-ray beam was introduced for use with the extended model.^ This work has examined the reconstructive capability of the Laplace pair model for a photon beam range of from 50 kVp to 25 MV, using both theoretical and experimental methods.^ In the diagnostic region, excellent agreement between a wide variety of experimental spectra and those reconstructed with the Laplace model was obtained when the atomic composition of the attenuators was accurately known. The model successfully reproduced a 2 MV spectrum but demonstrated difficulty in accurately reconstructing orthovoltage and 6 MV spectra. The 25 MV spectrum was successfully reconstructed although poor agreement with the spectrum obtained by Levy was found.^ The analysis of errors, performed with diagnostic energy data, demonstrated the relative insensitivity of the model to typical experimental errors and confirmed that the model can be successfully used to theoretically derive accurate spectral information from experimental attenuation data. ^
Resumo:
We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents.
Resumo:
In the present work we report theoretical Stark widths and shifts calculated using the Griem semi-empirical approach, corresponding to 237 spectral lines of MgIII. Data are presented for an electron density of 1017 cm?3 and temperatures T = 0.5?10.0 (104 K). The matrix elements used in these calculations have been determined from 23 configurations of MgIII: 2s22p6, 2s22p53p, 2s22p54p, 2s22p54f and 2s22p55f for even parity and 2s22p5ns (n = 3?6), 2s22p5nd (n = 3?9), 2s22p55g and 2s2p6np (n = 3?8) for odd parity. For the intermediate coupling (IC) calculations, we use the standard method of least-squares fitting from experimental energy levels by means of the Cowan computer code. Also, in order to test the matrix elements used in our calculations, we present calculated values of 70 transition probabilities of MgIII spectral lines and 14 calculated values of radiative lifetimes of MgIII levels. There is good agreement between our calculations and experimental radiative lifetimes. Spectral lines of MgIII are relevant in astrophysics and also play an important role in the spectral analysis of laboratory plasma. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. No values of Stark parameters can be found in the bibliography.
Resumo:
So far, the majority of reports on on-line measurement considered soil properties with direct spectral responses in near infrared spectroscopy (NIRS). This work reports on the results of on-line measurement of soil properties with indirect spectral responses, e.g. pH, cation exchange capacity (CEC), exchangeable calcium (Caex) and exchangeable magnesium (Mgex) in one field in Bedfordshire in the UK. The on-line sensor consisted of a subsoiler coupled with an AgroSpec mobile, fibre type, visible and near infrared (vis–NIR) spectrophotometer (tec5 Technology for Spectroscopy, Germany), with a measurement range 305–2200 nm to acquire soil spectra in diffuse reflectance mode. General calibration models for the studied soil properties were developed with a partial least squares regression (PLSR) with one-leave-out cross validation, using spectra measured under non-mobile laboratory conditions of 160 soil samples collected from different fields in four farms in Europe, namely, Czech Republic, Denmark, Netherland and UK. A group of 25 samples independent from the calibration set was used as independent validation set. Higher accuracy was obtained for laboratory scanning as compared to on-line scanning of the 25 independent samples. The prediction accuracy for the laboratory and on-line measurements was classified as excellent/very good for pH (RPD = 2.69 and 2.14 and r2 = 0.86 and 0.78, respectively), and moderately good for CEC (RPD = 1.77 and 1.61 and r2 = 0.68 and 0.62, respectively) and Mgex (RPD = 1.72 and 1.49 and r2 = 0.66 and 0.67, respectively). For Caex, very good accuracy was calculated for laboratory method (RPD = 2.19 and r2 = 0.86), as compared to the poor accuracy reported for the on-line method (RPD = 1.30 and r2 = 0.61). The ability of collecting large number of data points per field area (about 12,800 point per 21 ha) and the simultaneous analysis of several soil properties without direct spectral response in the NIR range at relatively high operational speed and appreciable accuracy, encourage the recommendation of the on-line measurement system for site specific fertilisation.
Resumo:
In order to evaluate ground shaking characteristics due to surface soil layers in the urban area of Port-au-Prince, short-period ambient noise observation has been performed approximately in a 500x500m grid. The HVSR method was applied to this set of 36 ambient noise measurement points to determine a distribution map of soil predominant periods. This map reveals a general increasing trend in the period values, from the Miocene conglomerates in the northern and southern parts of the town to the central and western zones formed of Pleistocene and Holocene alluvial deposits respectively, where the shallow geological materials that cover the basement increase in thickness. Shorter predominant periods (less than 0.3 s) were found in mountainous and neighbouring zones, where the thickness of sediments is smaller whereas longer periods (greater than 0.5 s) appear in Holocene alluvial fans, where the thickness of sediments is larger. The shallow shear-wave velocity structure have been estimated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. The measurements were carried out at one open space located in Holocene alluvial deposits, using 3 regular pentagonal arrays with 5, 10 and 20m respectively. Reliable dispersion curves were retrieved for frequencies between 4.0 and 14 Hz, with phase velocity values ranging from 420m/s down to 270 m/s. Finally, the average shear-wave velocity of the upper 30 m (VS30) was inverted for characterization of this geological unit.
Resumo:
The bankability of CPV projects is an important issue to pave the way toward a swift and sustained growth in this technology. The bankability of a PV plant is generally addressed through the modeling of its energy yield under a b aseline loss scenario, followed by an on-site measurement campaign aimed at verifying its energetic behavior. The main difference between PV and CPV resides in the proper CPV modules, in particular in the inclusion of optical lements and III-V multijunction cells that are much more sensitive to spectral variations than xSi cells, while the rest of the system behaves in a way that possesses many common points with xSi technology. The modeling of the DC power output of a CPV system thus requires several impo rtant second order parameters to be considered, mainly related to optics, spectral direct solar radiation, wind speed, tracker accuracy and heat dissipation of cells.
Resumo:
One of the common failure modes of reinforced concrete (RC) beams strengthened in flexure with a bonded fibre-reinforced polymer (FRP) is intermediate crack (IC) debonding, which is originated at a critical section in the vicinity of flexural cracks and propagates to a plate end. Despite considerable research over the last years, few reliable and simplified IC debonding strength models have been developed. This paper firstly presents a one-dimensional model based on the discrete crack approach for concrete and the spectral element method for the numerical simulation of the IC debonding process. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics.
Resumo:
An impedance-based midspan debonding identification method for RC beams strengthened with FRP strips is presented in this paper using piezoelectric ceramic (PZT) sensor?actuators. To reach this purpose, firstly, a two-dimensional electromechanical impedance model is proposed to predict the electrical admittance of the PZT transducer bonded to the FRP strips of an RC beam. Considering the impedance is measured in high frequencies, a spectral element model of the bonded-PZT?FRP strengthened beam is developed. This model, in conjunction with experimental measurements of PZT transducers, is used to present an updating methodology to quantitatively detect interfacial debonding of these kinds of structures. To improve the performance and accuracy of the detection algorithm in a challenging problem such as ours, the structural health monitoring approach is solved with an ensemble process based on particle of swarm. An adaptive mesh scheme has also been developed to increase the reliability in locating the area in which debonding initiates. Predictions carried out with experimental results have showed the effectiveness and potential of the proposed method to detect prematurely at its earliest stages a critical failure mode such as that due to midspan debonding of the FRP strip.