432 resultados para Speckle interferometry
Resumo:
Vol. 3 and 4 have title: Displacement interferometry by the aid of the achromatic fringes.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
The development of near-resonant holographic interferometry techniques for use on flows seeded with atomic species is described. A theoretical model for the refractivity that is due to the seed species is outlined, and an approximation to this model is also described that is shown to be valid for practical regimes of interest and allows the number density of the species to be determined without knowledge of line-broadening effects. The details of quantitative number density experiments performed on an air-acetylene flame are given, and a comparison with an alternative absorption-based experiment is made. (C) 2004 Optical Society of America.
Resumo:
Near-resonant holographic interferometry is demonstrated to measure temperature and species concentration in a two-dimensional steady premixed air-acetylene flame. A peak temperature of (2600 +/- 100) K and a peak OH number density of (9.6 +/- 0.3) X 10(22) m(-3) are obtained, consistent with the expected values for such a flame. These values are determined by recording interferograms with a laser assumed sufficiently detuned from line center so that pressure and temperature broadening can be ignored. The results are thus obtained without making prior assumptions on the temperature or pressure of the flame beyond the existence of thermal equilibrium. (C) 2004 Optical Society of America.
Resumo:
Two-dimensional (2-D) strain (epsilon(2-D)) on the basis of speckle tracking is a new technique for strain measurement. This study sought to validate epsilon(2-D) and tissue velocity imaging (TVI)based strain (epsilon(TVI)) with tagged harmonic-phase (HARP) magnetic resonance imaging (MRI). Thirty patients (mean age. 62 +/- 11 years) with known or suspected ischemic heart disease were evaluated. Wall motion (wall motion score index 1.55 +/- 0.46) was assessed by an expert observer. Three apical images were obtained for longitudinal strain (16 segments) and 3 short-axis images for radial and circumferential strain (18 segments). Radial epsilon(TVI) was obtained in the posterior wall. HARP MRI was used to measure principal strain, expressed as maximal length change in each direction. Values for epsilon(2-D), epsilon(TVI), and HARP MRI were comparable for all 3 strain directions and were reduced in dysfunctional segments. The mean difference and correlation between longitudinal epsilon(2-D) and HARP MRI (2.1 +/- 5.5%, r = 0.51, p < 0.001) were similar to those between longitudinal epsilon(TVI), and HARP MRI (1.1 +/- 6.7%, r = 0.40, p < 0.001). The mean difference and correlation were more favorable between radial epsilon(2-D) and HARP MRI (0.4 +/- 10.2%, r = 0.60, p < 0.001) than between radial epsilon(TVI), and HARP MRI (3.4 +/- 10.5%, r = 0.47, p < 0.001). For circumferential strain, the mean difference and correlation between epsilon(2-D) and HARP MRI were 0.7 +/- 5.4% and r = 0.51 (p < 0.001), respectively. In conclusion, the modest correlations of echocardiographic and HARP MRI strain reflect the technical challenges of the 2 techniques. Nonetheless, epsilon(2-D) provides a reliable tool to quantify regional function, with radial measurements being more accurate and feasible than with TVI. Unlike epsilon(TVI), epsilon(2-D) provides circumferential measurements. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
We describe an all-fibre, passive scheme for making extended range interferometric measurements based on the dual wavelength technique. The coherence tuned interferometer network is illuminated with a single superfluorescent fibre source at 1.55 µm and the two wavelengths are synthesised at the output by means of chirped fibre Bragg gratings. We demonstrate an unambiguous sensing range of 270 µm, with a dynamic range of 2.7 × 10 5.
Resumo:
We describe how an acousto-optic tunable filter can be used to both demultiplex the signals from multiple fibre Bragg grating sensors and simultaneously provide wide bandwidth signal demodulation in a system using interferometric wavelength shift detection. In an experimental demonstration, the approach provided a noise limited strain resolution of 24.9 n epsilon Hz(-1/ 2) at 15 Hz.
Resumo:
An optical coherence tomography (OCT) system to produce both longitudinal and transversal images of the in vivo human eye is presented. For the first time, OCT transversal images collected from the living eye at 50-µm depth steps show details unobtainable with the state-of-the-art scanning laser ophthalmoscope. Images of up to 3×3?mm are produced from the retina in less than a second. For images larger than 1.6×1.6?mm, a path modulation is introduced by the galvanometric scanning mirror and is used as an effective phase modulation method.