987 resultados para Specific leaf area


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The jambu belongs to the family Asteraceae, tropical crop, nowadays, this plant has been considered as a promising vegetable crop, because to its pharmacological properties. Despite this novelty, the vegetable remains invisible in the statistics of production and market in the state of Para, Brazil. This research was carried out with the aim of comparing the economic productivity and phenological development by the morpho-physiological growth indexes of two cultivars of jambu organic manure and mineral fertilizers. The experiment was carried out at the Sao Manuel Experimental Farm (Sao Manuel-SP), which belongs to the Faculdade de Ciencias Agronomicas - UNESP, campus Botucatu. The experimental design was a factorial randomized blocks (2 x 2) with two fertilization (organic and mineral) and two cultivars (Jambuarana and Nazareth), with six replications, two fertilization (organic and mineral) and two cultivars (Jambuarana and Nazareth). The following characteristics were evaluated: Plant height (cm), Leaf area (cm(2)), Fresh mass (g), Dry mass (g), Leaf area index (LAI), Leaf area ratio (LAR), Specific leaf Area (SLA), Leaf Weight Ratio (LWR), Amount of water in the plant (QAPA) (g per plant set), Leaf specific weight (LSW) (g cm(-2) per plant set) and Economic productivity. All data were statistically analyzed by analysis of variance and the Tukey test (1%) for mean comparison, with the software SISVAR. In the conditions of this experiment was carried out, it was possible to verify that the cultivar Jamburana had not only a good agronomic development and economic productivity under organic fertilization but also the best morpho-physiological indexes, showing that this kind of fertilization increases the agronomic effectiveness of this cultivar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfei çoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Warm-season grasses are economically important for cattle production in tropical regions and tools to aid in management and research on these forages would be highly beneficial both in research and the industry. This research was conducted to adapt the CROPGRO-Perennial Forage model to simulate growth of the tropical species guineagrass (Panicum maximum Jacq. cv. 'Tanzania') and to describe model adaptation for this species. To develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation, and partitioning during a 17-mo experiment with Tanzania guineagrass in Piracicaba, SP, Brazil. Compared with starting parameters for palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. 'Xaraes'], dormancy effects of the perennial forage model had to be minimized, partitioning to storage tissue or root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield was 6576 kg ha(-1), averaged across 11 regrowth cycles of 35 (summer) or 63 d (winter), with a RMSE of 494 kg ha(-1) (Willmott's index of agreement d = 0.985, simulated/observed ratio = 1.014). The model also gave good predictions against an independent data set, with similar RMSE, ratio, and d. The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of guineagrass and can be used to simulate growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The watermelon is traditionally cultivated horizontally on the ground. The cultivars of small fruits (1 to 3 kg), which reach better market prices, are also being grown in a greenhouse, where the plants are trained upward on vertical supports, with branches pruning and fruits thinning. These practices make possible an increase of the plant density, fruit quality and yield compared to the traditional growth system. The aim of this experiment was to evaluate the influence of three training heights (1.7, 2.2 and 2.7 m) and two planting densities (3.17 and 4.76 plants m-2) over the productive and qualitative characteristics of mini watermelon "Smile" cultivated in greenhouse. The pruning was done at 43, 55 and 66 days after transplanting (DAT), when the plant height reached 1.7, 2.2 and 2.7 m, respectively. The dry mass of branches, petioles, leaves and total were affected by the training height, where the highest values were obtained by the plants pruned at 2.2 and 2.7 m. Leaf area, specific leaf area and leaf area index were not affected by the height of the plants. The training height of 2.7 m raised the total yield, however, marketable yield, average fruit mass and all the quality characteristics did not differ significantly from those obtained by the training height of 2.2 m. Regarding to plant density, the best option was 4.76 plants m-2, due to the increasing of marketable yield in 37.4% without reducing the average weight of fruits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric nitrogen (N) and phosphorus (P) depositions are expected to increase in the tropicsrnas a consequence of increasing human activities in the next decades. Furthermore, a possiblernshortened El Niño Southern Oscillation cycle might come along with more frequent calcium (Ca)rndepositions on the eastern slope of the Ecuadorian Andes originating from Saharan dust. It isrncrucial to understand the response of the old-growth montane forest in Ecuador to increasedrnnutrient deposition to predict the further development of this megadiverse ecosystem.rnI studied experimental additions of N, P, N+P and Ca to the forest and an untreatedrncontrol, all in a fourfold replicated randomized block design. These experiments were conductedrnin the framework of a collaborative research effort, the NUtrient Manipulation EXperimentrn(NUMEX). I collected litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfallrnand fine litterfall samples and determined N, P and Ca concentrations and fluxes. This approachrnalso allowed me to assess whether N, P and/or Ca are limiting nutrients for forest growth.rnFurthermore, I evaluated the response of fine root biomass, leaf area index, leaf area and specificrnleaf area, tree diameter growth and basal area increment contributed from a cooperating group inrnthe Ca applied and control treatments.rnDuring the observation period of 16 months after the first fertilizer application, less thanrn10, 1 and 5% of the applied N, P and Ca, respectively, leached below the organic layer whichrncontained almost all roots but no significant leaching losses occurred to the deeper mineral soil.rnDeposited N, P and Ca from the atmosphere in dry and wet form were, on balance, retained in therncanopy in the control treatment. Retention of N, P and Ca in the canopy in their respectiverntreatments was reduced resulting in higher concentrations and fluxes of N, P and Ca inrnthroughfall and litterfall. Up to 2.5% of the applied N and 2% of the applied P and Ca werernrecycled to the soil with throughfall. Fluxes of N, P and Ca in throughfall+litterfall were higher inrnthe fertilized treatments than in the control; up to 20, 5 and 25% of the applied N, P and Ca,rnrespectively, were recycled to the soil with throughfall+litterfall.rnIn the Ca-applied plots, fine root biomass decreased significantly. Also the leaf area of thernfour most common tree species tended to decrease and the specific leaf area increasedrnsignificantly in Graffenrieda emarginata Triana, the most common tree species in the study area.rnThese changes are known plant responses to reduced nutrient stress. Reduced aluminium (Al)rntoxicity as an explanation of the Ca effect was unlikely, because of almost complete organocomplexationrnof Al and molar Ca:Al concentration ratios in solution above the toxicity threshold.rnThe results suggest that N, P and Ca co-limit the forest ecosystem functioning in thernnorthern Andean montane forests in line with recent assumptions in which different ecosystemrncompartments and even different phenological stages may show different nutrient limitationsrn(Kaspari et al. 2008). I conclude that (1) the expected elevated N and P deposition will bernretained in the ecosystem, at least in the short term and hence, quality of river water will not bernendangered and (2) increased Ca input will reduce nutrient stress of the forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.Methods Root uptake of NH4+ and NO3-, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+.Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. Using data from an extensive national survey of English grasslands, we show that surface soil (0–7 cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. Soil C stocks in the largest pool, of intermediate particle size (50–250 μm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0·45–50 μm), was explained by soil pH and the community abundance-weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N-rich vegetation. The C stock in the small active fraction (250–4000 μm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. Synthesis and applications. Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1–100 000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim The usual hypothesis about the relationship between niche breadth and range size posits that species with the capacity to use a wider range of resources or to tolerate a greater range of environmental conditions should be more widespread. In plants, broader niches are often hypothesized to be due to pronounced phenotypic plasticity, and more plastic species are therefore predicted to be more common. We examined the relationship between the magnitude of phenotypic plasticity in five functional traits, mainly related to leaves, and several measures of abundance in 105 Central European grassland species. We further tested whether mean values of traits, rather than their plasticity, better explain the commonness of species, possibly because they are pre-adapted to exploiting the most common resources. Location Central Europe. Methods In a multispecies experiment with 105 species we measured leaf thickness, leaf greenness, specific leaf area, leaf dry matter content and plant height, and the plasticity of these traits in response to fertilization, waterlogging and shading. For the same species we also obtained five measures of commonness, ranging from plot-level abundance to range size in Europe. We then examined whether these measures of commonness were associated with the magnitude of phenotypic plasticity, expressed as composite plasticity of all traits across the experimental treatments. We further estimated the relative importance of trait plasticity and trait means for abundance and geographical range size. Results More abundant species were less plastic. This negative relationship was fairly consistent across several spatial scales of commonness, but it was weak. Indeed, compared with trait means, plasticity was relatively unimportant for explaining differences in species commonness. Main conclusions Our results do not indicate that larger phenotypic plasticity of leaf morphological traits enhances species abundance. Furthermore, possession of a particular trait value, rather than of trait plasticity, is a more important determinant of species commonness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazing ungulates play a key role in many ecosystems worldwide and can form diverse assemblages, such as in African savannahs. In many of these ecosystems, present-day ungulate communities are impoverished subsets of once diverse assemblages. While we know that excluding all ungulates from grasslands can exert major effects on both the structure and composition of the vegetation, how different individual ungulate species may have contrasting effects on grassland communities remains poorly understood. Here, we performed a long-term ‘Russian doll’ grazing exclosure experiment in an African savannah to test for the effects of different size classes of grazers on grassland structure and composition. At five sites, grazer species of decreasing size class (ranging from white rhino to scrub hare) were excluded using four fence types, to experimentally create different realized grazer assemblages. The vegetation structure and the grass functional community composition were characterized in 6 different years over a 10-year period. Additionally, animal footprints were counted to quantify the abundance of different ungulate species in each treatment. We found that while vegetation height was mostly driven by total grazing pressure of all species together, ungulate community composition best explained the functional community composition of grasses. In the short term, smaller ungulate species (‘mesoherbivores’) had strongest effects on vegetation composition, by shifting communities towards dominance by species with low specific leaf area and low nutritional value. In the long term, large grazers had stronger but similar effects on the functional composition of the system. Surprisingly, the largest ‘mega-herbivore’, the white rhinoceros, did not have strong effects on the vegetation structure or composition. Synthesis. Our results support the idea that different size classes of grazers have varying effects on the functional composition of grassland plant communities. Therefore, the worldwide decline in the diversity of ungulate species is expected to have (had) major impacts on community composition and functioning of grassland ecosystems, even if total grazing pressure has remained constant, for example, due to replacement by livestock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brassica rapa var. pekinensis, hakusay, es una hortaliza cuya producción puede iniciarse a partir de transplantes o siembra directa. El objetivo de este trabajo fue caracterizar el crecimiento de plantines de esta hortaliza en contenedores, previo al transplante, a través de variables morfogenéticas y de crecimiento. La biomasa total (PST), el peso seco aéreo (PSA) y el peso seco de raíces (PSR) mostraron una tendencia creciente, particular en cada caso. El área foliar (AF) se incrementó hasta estabilizarse días antes del transplante, momento en el cual se observó el efecto limitante del contenedor. Las variables morfogenéticas: razón de área foliar (RAF) y área foliar específica (AFE) descendieron hasta alcanzar valores casi constantes la semana previa al transplante. Las variables de crecimiento: índice de crecimiento relativo de la planta (ICRP) e índice de crecimiento relativo foliar (ICRF) descendieron, el primero con valores superiores hasta el día 31, hecho que se refleja a través de Gamma (Gf); la tasa absoluta de crecimiento (TAC) se incrementó hasta el día 31 del período y después cayó abruptamente; la tasa de asimilación neta (TAN) creció hasta el día 31 posterior a la siembra para luego caer al final del período. El productor podría decidir el momento del transplante como aquel definido por la detención de la expansión foliar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo evalúa la influencia de la fertilización en radicchio tipo "Rosso de Chioggia" (precocidad media) sobre algunos índices de crecimiento. Se realizaron ensayos durante dos campañas en Rovigo (Italia) y una en Mendoza (Argentina), aplicándose dosis crecientes de NPK, identificadas como N0P0K0, N1P1K1, N2P2K2, en Mendoza y en Rovigo, además, N3P2K2. Durante el cultivo se calcularon índices de crecimiento como: relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA), leaf weigh ratio (LWR), crop growth ratio (CGR), leaf area index (LAI) and leaf area duration (LAD). En Mendoza, el CGR estuvo fuertemente influenciado por NAR desde el trasplante hasta alcanzar 776 grados días (GDD); desde 1052 a 1653 GDD el CGR fue afectado por el LAI el cual aumentó marcadamente debido a las condiciones ambientales favorables. Entre los 1052 y 1653 GDD el incremento del LAI determinó una reducción en la eficiencia fotosintética. En Rovigo, la tendencia de los índices fue disímil en los dos años, encontrándose respuestas diferentes en LAR y en SLA. En el segundo año, el CGR siempre arrojó valores más altos, mientras que NAR no difirió en ninguno de los años. En la segunda mitad del ciclo, CGR estuvo fuertemente asociado a una menor eficiencia fotosintética, debido a la formación de la cabeza. Valores elevados de LAI indicaron una extensión del ciclo, retrasando la formación de la cabeza. Las plantas alcanzaron la madurez comercial con LWR entre 0,35 - 0,40 g g-1. En ambos ambientes, no se observó claramente el efecto de la fertilización sobre los índices; si bien las dosis más altas mostraron mayor actividad de crecimiento en las etapas tempranas.