967 resultados para Speaker Recognition, Text-constrained, Multilingual, Speaker Verification, HMMs
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to incorporate speech-based input within mobile data collection applications. In our previous work [1], we evaluated the ability of a single speech recognition engine to support accurate, mobile, speech-based data input. Here, we build on our previous research to compare the achievable speaker-independent accuracy rates of a variety of speech recognition engines; we also consider the relative effectiveness of different speech recognition engine and microphone pairings in terms of their ability to support accurate text entry under realistic mobile conditions of use. Our intent is to provide some initial empirical data derived from mobile, user-based evaluations to support technological decisions faced by developers of mobile applications that would benefit from, or require, speech-based data entry facilities.
Resumo:
10 lectal variables were examined with respect to Norwegian speakers' acceptance of long-distance reflexives (LDR), using a questionnaire to elicit grammaticality judgements on 50 potential LDR sentences. A sample of 180 speakers completed the questionnaire. The data was analysed using a general linear model univariate model, and Spearman's correlation. In this sample the results showed that dialect and level of education had significant effects on speakers' acceptance of long-distance reflexives, while sex, age, being a native speaker, having both native-speaker parents, living in the city or the country, and the speaker's attitudes to the two Norwegian writing languages had no influence on speakers' acceptance of long-distance reflexives. It is suggested that the influence of Danish on Norwegian writing and on the southern dialects may be the cause of the observed variation with respect to LDR in Norwegian.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010
Resumo:
Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.
Resumo:
Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
Digit speech recognition is important in many applications such as automatic data entry, PIN entry, voice dialing telephone, automated banking system, etc. This paper presents speaker independent speech recognition system for Malayalam digits. The system employs Mel frequency cepstrum coefficient (MFCC) as feature for signal processing and Hidden Markov model (HMM) for recognition. The system is trained with 21 male and female voices in the age group of 20 to 40 years and there was 98.5% word recognition accuracy (94.8% sentence recognition accuracy) on a test set of continuous digit recognition task.
Resumo:
Development of Malayalam speech recognition system is in its infancy stage; although many works have been done in other Indian languages. In this paper we present the first work on speaker independent Malayalam isolated speech recognizer based on PLP (Perceptual Linear Predictive) Cepstral Coefficient and Hidden Markov Model (HMM). The performance of the developed system has been evaluated with different number of states of HMM (Hidden Markov Model). The system is trained with 21 male and female speakers in the age group ranging from 19 to 41 years. The system obtained an accuracy of 99.5% with the unseen data
Resumo:
A connected digit speech recognition is important in many applications such as automated banking system, catalogue-dialing, automatic data entry, automated banking system, etc. This paper presents an optimum speaker-independent connected digit recognizer forMalayalam language. The system employs Perceptual Linear Predictive (PLP) cepstral coefficient for speech parameterization and continuous density Hidden Markov Model (HMM) in the recognition process. Viterbi algorithm is used for decoding. The training data base has the utterance of 21 speakers from the age group of 20 to 40 years and the sound is recorded in the normal office environment where each speaker is asked to read 20 set of continuous digits. The system obtained an accuracy of 99.5 % with the unseen data.
Resumo:
Title: Data-Driven Text Generation using Neural Networks Speaker: Pavlos Vougiouklis, University of Southampton Abstract: Recent work on neural networks shows their great potential at tackling a wide variety of Natural Language Processing (NLP) tasks. This talk will focus on the Natural Language Generation (NLG) problem and, more specifically, on the extend to which neural network language models could be employed for context-sensitive and data-driven text generation. In addition, a neural network architecture for response generation in social media along with the training methods that enable it to capture contextual information and effectively participate in public conversations will be discussed. Speaker Bio: Pavlos Vougiouklis obtained his 5-year Diploma in Electrical and Computer Engineering from the Aristotle University of Thessaloniki in 2013. He was awarded an MSc degree in Software Engineering from the University of Southampton in 2014. In 2015, he joined the Web and Internet Science (WAIS) research group of the University of Southampton and he is currently working towards the acquisition of his PhD degree in the field of Neural Network Approaches for Natural Language Processing. Title: Provenance is Complicated and Boring — Is there a solution? Speaker: Darren Richardson, University of Southampton Abstract: Paper trails, auditing, and accountability — arguably not the sexiest terms in computer science. But then you discover that you've possibly been eating horse-meat, and the importance of provenance becomes almost palpable. Having accepted that we should be creating provenance-enabled systems, the challenge of then communicating that provenance to casual users is not trivial: users should not have to have a detailed working knowledge of your system, and they certainly shouldn't be expected to understand the data model. So how, then, do you give users an insight into the provenance, without having to build a bespoke system for each and every different provenance installation? Speaker Bio: Darren is a final year Computer Science PhD student. He completed his undergraduate degree in Electronic Engineering at Southampton in 2012.
Resumo:
In this article, we examine the case of a system that cooperates with a “direct” user to plan an activity that some “indirect” user, not interacting with the system, should perform. The specific application we consider is the prescription of drugs. In this case, the direct user is the prescriber and the indirect user is the person who is responsible for performing the therapy. Relevant characteristics of the two users are represented in two user models. Explanation strategies are represented in planning operators whose preconditions encode the cognitive state of the indirect user; this allows tailoring the message to the indirect user's characteristics. Expansion of optional subgoals and selection among candidate operators is made by applying decision criteria represented as metarules, that negotiate between direct and indirect users' views also taking into account the context where explanation is provided. After the message has been generated, the direct user may ask to add or remove some items, or change the message style. The system defends the indirect user's needs as far as possible by mentioning the rationale behind the generated message. If needed, the plan is repaired and the direct user model is revised accordingly, so that the system learns progressively to generate messages suited to the preferences of people with whom it interacts.