989 resultados para Space distribution
Resumo:
This thesis develops a comprehensive and a flexible statistical framework for the analysis and detection of space, time and space-time clusters of environmental point data. The developed clustering methods were applied in both simulated datasets and real-world environmental phenomena; however, only the cases of forest fires in Canton of Ticino (Switzerland) and in Portugal are expounded in this document. Normally, environmental phenomena can be modelled as stochastic point processes where each event, e.g. the forest fire ignition point, is characterised by its spatial location and occurrence in time. Additionally, information such as burned area, ignition causes, landuse, topographic, climatic and meteorological features, etc., can also be used to characterise the studied phenomenon. Thereby, the space-time pattern characterisa- tion represents a powerful tool to understand the distribution and behaviour of the events and their correlation with underlying processes, for instance, socio-economic, environmental and meteorological factors. Consequently, we propose a methodology based on the adaptation and application of statistical and fractal point process measures for both global (e.g. the Morisita Index, the Box-counting fractal method, the multifractal formalism and the Ripley's K-function) and local (e.g. Scan Statistics) analysis. Many measures describing the space-time distribution of environmental phenomena have been proposed in a wide variety of disciplines; nevertheless, most of these measures are of global character and do not consider complex spatial constraints, high variability and multivariate nature of the events. Therefore, we proposed an statistical framework that takes into account the complexities of the geographical space, where phenomena take place, by introducing the Validity Domain concept and carrying out clustering analyses in data with different constrained geographical spaces, hence, assessing the relative degree of clustering of the real distribution. Moreover, exclusively to the forest fire case, this research proposes two new methodologies to defining and mapping both the Wildland-Urban Interface (WUI) described as the interaction zone between burnable vegetation and anthropogenic infrastructures, and the prediction of fire ignition susceptibility. In this regard, the main objective of this Thesis was to carry out a basic statistical/- geospatial research with a strong application part to analyse and to describe complex phenomena as well as to overcome unsolved methodological problems in the characterisation of space-time patterns, in particular, the forest fire occurrences. Thus, this Thesis provides a response to the increasing demand for both environmental monitoring and management tools for the assessment of natural and anthropogenic hazards and risks, sustainable development, retrospective success analysis, etc. The major contributions of this work were presented at national and international conferences and published in 5 scientific journals. National and international collaborations were also established and successfully accomplished. -- Cette thèse développe une méthodologie statistique complète et flexible pour l'analyse et la détection des structures spatiales, temporelles et spatio-temporelles de données environnementales représentées comme de semis de points. Les méthodes ici développées ont été appliquées aux jeux de données simulées autant qu'A des phénomènes environnementaux réels; nonobstant, seulement le cas des feux forestiers dans le Canton du Tessin (la Suisse) et celui de Portugal sont expliqués dans ce document. Normalement, les phénomènes environnementaux peuvent être modélisés comme des processus ponctuels stochastiques ou chaque événement, par ex. les point d'ignition des feux forestiers, est déterminé par son emplacement spatial et son occurrence dans le temps. De plus, des informations tels que la surface bru^lée, les causes d'ignition, l'utilisation du sol, les caractéristiques topographiques, climatiques et météorologiques, etc., peuvent aussi être utilisées pour caractériser le phénomène étudié. Par conséquent, la définition de la structure spatio-temporelle représente un outil puissant pour compren- dre la distribution du phénomène et sa corrélation avec des processus sous-jacents tels que les facteurs socio-économiques, environnementaux et météorologiques. De ce fait, nous proposons une méthodologie basée sur l'adaptation et l'application de mesures statistiques et fractales des processus ponctuels d'analyse global (par ex. l'indice de Morisita, la dimension fractale par comptage de boîtes, le formalisme multifractal et la fonction K de Ripley) et local (par ex. la statistique de scan). Des nombreuses mesures décrivant les structures spatio-temporelles de phénomènes environnementaux peuvent être trouvées dans la littérature. Néanmoins, la plupart de ces mesures sont de caractère global et ne considèrent pas de contraintes spatiales com- plexes, ainsi que la haute variabilité et la nature multivariée des événements. A cet effet, la méthodologie ici proposée prend en compte les complexités de l'espace géographique ou le phénomène a lieu, à travers de l'introduction du concept de Domaine de Validité et l'application des mesures d'analyse spatiale dans des données en présentant différentes contraintes géographiques. Cela permet l'évaluation du degré relatif d'agrégation spatiale/temporelle des structures du phénomène observé. En plus, exclusif au cas de feux forestiers, cette recherche propose aussi deux nouvelles méthodologies pour la définition et la cartographie des zones périurbaines, décrites comme des espaces anthropogéniques à proximité de la végétation sauvage ou de la forêt, et de la prédiction de la susceptibilité à l'ignition de feu. A cet égard, l'objectif principal de cette Thèse a été d'effectuer une recherche statistique/géospatiale avec une forte application dans des cas réels, pour analyser et décrire des phénomènes environnementaux complexes aussi bien que surmonter des problèmes méthodologiques non résolus relatifs à la caractérisation des structures spatio-temporelles, particulièrement, celles des occurrences de feux forestières. Ainsi, cette Thèse fournit une réponse à la demande croissante de la gestion et du monitoring environnemental pour le déploiement d'outils d'évaluation des risques et des dangers naturels et anthro- pogéniques. Les majeures contributions de ce travail ont été présentées aux conférences nationales et internationales, et ont été aussi publiées dans 5 revues internationales avec comité de lecture. Des collaborations nationales et internationales ont été aussi établies et accomplies avec succès.
Resumo:
This paper aims to provide insights into the phenomenon of knowledge flows. We study one of the main mechanisms through which these flows occur, i.e., the mobility of highly-skilled individuals. We focus on the geographical mobility of inventors across European regions. Thus, patent data are used to trace the pattern of inventors’ mobility across european regions, to track down focuses of attraction of talent throughout the continent, and to study their distribution across the space. To do so, we gather information from PCT patent documents and we first match the names which seemed to belong to the same inventor and then we create a new algorithm to decide whether each patent applied for under each name belongs to the same inventor.
Resumo:
Phenomena with a constrained sample space appear frequently in practice. This is the case e.g. with strictly positive data, or with compositional data, like percentages or proportions. If the natural measure of difference is not the absolute one, simple algebraic properties show that it is more convenient to work with a geometry different from the usual Euclidean geometry in real space, and with a measure different from the usual Lebesgue measure, leading to alternative models which better fit the phenomenon under study. The general approach is presented and illustrated using the normal distribution, both on the positive real line and on the D-part simplex. The original ideas of McAlister in his introduction to the lognormal distribution in 1879, are recovered and updated
Resumo:
Pulsed electroacoustic (PEA) method is a commonly used non-destructive technique for investigating space charges. It has been developed since early 1980s. These days there is continuing interest for better understanding of the influence of space charge on the reliability of solid electrical insulation under high electric field. The PEA method is widely used for space charge profiling for its robust and relatively inexpensive features. The PEA technique relies on a voltage impulse used to temporarily disturb the space charge equilibrium in a dielectric. The acoustic wave is generated by charge movement in the sample and detected by means of a piezoelectric film. The spatial distribution of the space charge is contained within the detected signal. The principle of such a system is already well established, and several kinds of setups have been constructed for different measurement needs. This thesis presents the design of a PEA measurement system as a systems engineering project. The operating principle and some recent developments are summarised. The steps of electrical and mechanical design of the instrument are discussed. A common procedure for measuring space charges is explained and applied to verify the functionality of the system. The measurement system is provided as an additional basic research tool for the Corporate Research Centre of ABB (China) Ltd. It can be used to characterise flat samples with thickness of 0.2–0.5 mm under DC stress. The spatial resolution of the measurement is 20 μm.
Resumo:
The objective of this master’s thesis is to investigate the loss behavior of three-level ANPC inverter and compare it with conventional NPC inverter. The both inverters are controlled with mature space vector modulation strategy. In order to provide the comparison both accurate and detailed enough NPC and ANPC simulation models should be obtained. The similar control model of SVM is utilized for both NPC and ANPC inverter models. The principles of control algorithms, the structure and description of models are clarified. The power loss calculation model is based on practical calculation approaches with certain assumptions. The comparison between NPC and ANPC topologies is presented based on results obtained for each semiconductor device, their switching and conduction losses and efficiency of the inverters. Alternative switching states of ANPC topology allow distributing losses among the switches more evenly, than in NPC inverter. Obviously, the losses of a switching device depend on its position in the topology. Losses distribution among the components in ANPC topology allows reducing the stress on certain switches, thus losses are equally distributed among the semiconductors, however the efficiency of the inverters is the same. As a new contribution to earlier studies, the obtained models of SVM control, NPC and ANPC inverters have been built. Thus, this thesis can be used in further more complicated modelling of full-power converters for modern multi-megawatt wind energy conversion systems.
Resumo:
Three sampling sites were analysed in each of the following tropical regions: 1) northwestern São Paulo State, representing a disturbed region; 2) Bonito, Mato Grosso do Sul State, representing a hard water region; and 3) Ubatuba, northern costal region of São Paulo State, a well preserved tropical rainforest region. The hard water region had the highest mean values for macroalgal species richness (6.3) and diversity index (H' = 0.62). Northwest and rainforest regions had the highest percent cover values (22.5% and 17.0%, respectively). All sites in the northwest region had one or two dominant species (percent cover significantly higher than the remaining species), characterizing the niche pre-emption distribution pattern. The same pattern was found in two sites of the Atlantic rainforest. The hard water region had dominance of one species in two out of the three sites, but differently from the northwest region, niche overlap values were lower, evidencing a patch distribution. Competition for space was one of the main factors to explain spatial distribution. Overall, sites characterized by niche pre-emption had lower species richness, higher values for niche width and overlap, dominance index and percent cover of dominant species. In contrast, sites characterized by patch distribution had higher species richness and lower values for niche overlap and width, dominance index and percent cover.
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
Biglycan and decorin are small leucine-rich proteoglycans that play several biological and structural roles in different tissues and organs. Several reports have indicated that biglycan participates in odontoblast and ameloblast differentiation and in the calcification process. In the present study we show that the expression of biglycan changes from within the ameloblasts and odontoblasts to the extracellular space according to the stage of animal development. In predentin and in the pulp space, however, biglycan was continually expressed throughout the period of investigation. In contrast, decorin was absent in odontoblasts and in ameloblasts and was exclusively expressed in predentin throughout the period of observation. In young rats, however, decorin was expressed in the extracellular spaces of the pulp, where it was concentrated mainly in the peripheral pulp.
Resumo:
Preparation for embryo implantation requires extensive adaptation of the uterine microenvironment. This process consists of cell proliferation and cell differentiation resulting in the transformation of endometrial fibroblasts into a new type of cell called decidual cell. In the present study, we followed the space-time distribution of versican and hyaluronan (HA) in different tissues of the uterus before and after embryo implantation. Fragments of mouse uteri obtained on the fourth, fifth, sixth and seventh days of pregnancy were fixed in Methacarn, embedded in Paraplast and cut into 5-µm thick sections. HA was detected using a biotinylated fragment of the proteoglycan aggrecan, which binds to this glycosaminoglycan with high affinity and specificity. Versican was detected by a polyclonal antibody. Both reactions were developed by peroxidase methods. Before embryo implantation, both HA and versican were present in the endometrial stroma. However, after embryo implantation, HA disappeared from the decidual region immediately surrounding the implantation chamber, whereas versican accumulated in the same region. The differences observed in the expression of HA and versican suggest that both molecules may participate in the process of endometrial decidualization and/or embryo implantation.
Resumo:
The primary objective of this investigation was that of providing a comprehensive tissue-by-tissue assessment of water-electrolyte status in thermally-acclimated rainbow trout, Salmo gairdneri. To this end levels of water and the major ions, sodium, chloride and potassium were evaluated in the plasma, at three skeletal muscle sites, and in cardiac muscle, liver, spleen, gut and brain of animals acclimated to 2°, 10° and 18°C. The occurrence of possible seasonal variations in water-electrolyte balance was evaluated by sampling sununer and late fall-early winter populations of trout. On the basis of values for water and electrolyte content, estimates of extracellular and cellular phase volumes, cellular electrolyte concentrations and Nernst equilibrium potentials were made. Since accurate assessment of the extracellular phase volume is critical in the estimation of cellular electrolyte concentrations and parameters based on assumed cellular ion levels, [14 C]-polyethylene glycol-4000, which is assumed to be confined to the extracellular space, was employed to provide comparisons with various ion-defined spaces (H20~~s, H20~~/K and H20~~s). Subsequently, the ion-defined space yielding the most realistic estimate of extracellular phase volume for each tissue was used in cellular electrolyte calculations. Water and electrolyte content and distribution varied with temperature. Tissues, such as liver, spleen and brain appeared to be the most thermosensitive, whereas skeletal and cardiac muscle and gut tissue were less influenced. 'Summer' series trout appeared to be more capable of maintaining their water- electrolyte balance than the ~fall-winter' series animals. i The data are discussed in terms of their possible effect on maintenance of appropriate cellular metabolic and electrophysiological functions.
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic conclusions remain valid. the proposed alternative solution which is presented hare is based on the constraint of a common general profit rate in both spaces and a money wage level which will be determined simultaneously with prices.
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic conclusions remain valid. the proposed alternative solution which is presented hare is based on the constraint of a common general profit rate in both spaces and a money wage level which will be determined simultaneously with prices.
Resumo:
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
Motivation for the present study is to improve the scienti c understanding on the prominent gap areas in the average three-dimensional distribution of clouds and their impact on the energetics of the earth-atmosphere system. This study is focused on the Indian subcontinent and the surrounding oceans bound within the latitude-longitude bands of 30 S to 30 N and 30 E to 110 E. Main objectives of this study are to : (i) estimate the monthly and seasonal mean vertical distributions of clouds and their spatial variations (which provide the monthly and seasonal mean 3-dimensional distributions of clouds) using multi-year satellite data and investigate their association with the general circulation of the atmosphere, (ii) investigate the characteristics of the `pool of inhibited cloudiness' that appear over the southwest Bay of Bengal during the Asian summer monsoon season (revealed by the 3-dimensional distribution of clouds) and identify the potential mechanisms for its genesis, (iii) investigate the role of SST and atmospheric thermo-dynamical parameters in regulating the vertical development and distribution of clouds, (iv) investigate the vertical distribution of tropical cirrus clouds and their descending nature using lidar observations at Thiruvananthapuram (8.5 N, 77 E), a tropical coastal station at the southwest Peninsular India, and (v) assessment of the impact of clouds on the energetics of the earth-atmosphere system, by estimating the regional seasonal mean cloud radiative forcing at top-of-the-atmosphere (TOA) and latent heating of the atmosphere by precipitating clouds using satellite data