905 resultados para Soybean cultivars
Resumo:
The southern armyworm (SAW) Spodoptera eridania (Cramer) is one of the most common armyworm species defoliating soybeans. Preliminary screening trials have indicated that some soybean genotypes exhibit resistance to SAW. Therefore, in this study, we evaluated the development of SAW larvae fed on ten soybean genotypes in order to identify genotypes with antibiosis-type resistance. Neonate SAW larvae were daily fed with young leaves collected from plants at the vegetative growth stages V4-V5. Larval development and survival were recorded. Genotypes PI 227687 and PI 227682 delayed larval, pupal, and larva-adult development and yielded larvae with the lowest weight and survival and pupae with the lowest weight. Genotypes IAC 100 and DM 339 also negatively affected larval and pupal development and larval survival but at a lower level. Based on our results, the soybean lines PI 227687 and PI 227682 could be used as sources of genes for soybean breeding programs aiming to develop high yield, SAW-resistant cultivars. Moreover, further trials must be carried out under field conditions to validate if the commercial cultivars IAC 100 and DM 339, which expressed moderate levels of antibiosis-type resistance in the laboratory, are effective in suppressing SAW larvae populations.
Resumo:
Since it was first reported in Brazil in the 1990s, the B biotype of silverleaf whitefly (Bemisia tabaci [Genn.], Hemiptera: Aleyrodidae) has been recognized as an important pest in soybeans (Glycine max L.), reducing the productivity of this legume species in some areas of the country. As an alternative to chemical control, the use of resistant genotypes represents an important tool for integrated pest management (IPM). This study evaluated the performance of 10 soybean genotypes prior to whitefly infestation, by testing attractiveness and preference for oviposition in the greenhouse and antibiosis in the laboratory. In a multiple-choice test, 'IAC-17' was the least attractive to insects. In a no-choice test, 'IAC-17' was the least attractive for, egg deposition, indicating the occurrence of non-preference for oviposition on this genotype. Trichome density was positively correlated with the oviposition site and may be associated with the resistance of 'IAC-17' to infestation. The genotypes 'IAC-PL1', 'IAC-19', 'Conquista', 'IAC-24' and 'IAC-17' extended the insect's life cycle, indicating the occurrence of a small degree of antibiosis and/or non-preference for feeding.
Resumo:
Screenhouse studies were conducted to investigate the effects of Fusarium oxysporum f. sp. glycines and Sclerotium rolfsii on the pathogenicity of Meloidogyne incognita race 2 on soybean and the influence of the nematode on wilt incidence and growth of soybean. The interaction of each fungus with the nematode resulted in reduced shoot and root growth. Final nematode population was also reduced with concomitant inoculation of nematode and fungus or inoculation of fungus before nematode. While M. incognita suppressed wilt incidence in two nematode-susceptible cultivars of soybean (TGX 1485-2D and TGX 1440-IE), it had limited effect on wilt incidence in the nematode resistant cultivar of soybean (TGX 1448-2E). When F. oxysporum was inoculated with the nematode, the mean number of nematodes that penetrated soybean roots decreased by 75% in TGX 1448-2E, 68% in TGX 1485-1D and 65% in TGX 1440-1E. Similarly when the soil was treated with S. rolfsii, the number decreased by 78% in TGX 1448-2E, 77% in TGX 1485-1D and 68% in TGX 1440-1E. The nematode did not develop beyond second-stage juvenile in TGX-1448-2E.
Resumo:
ABSTRACT: Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease of the crop and can cause yield losses of up to 90%. The disease was first reported in Brazil in 2001. Epidemics of the disease are common in the country, where the fungus can survive year?round. Regulatory measures to reduce the inoculum between seasons and avoid late-season soybean have been adopted to manage the disease. Disease control has relied mainly on chemical control, but a lower sensibility of the fungus to fungicides has been reported in Brazil. Major?resistance genes have been mapped and incorporated into the cultivars. With the reduced efficacy of the fungicides, the adoption of integrated measures to control the disease will be important for the sustainability of the crop. This review presents the main changes in the soybean crop system caused by the introduction of the fungus in Brazil, the current management strategies adopted to avoid losses, and the new trends that, together with biotechnological strategies, can improve management in the future. RESUMO: A ferrugem?asiática da soja, causada pelo fungo Phakopsora pachyrhizi, é a doença mais severa da cultura e pode causar perdas de produtividade de até 90%. A doença foi relatada pela primeira vez no Brasil em 2001. Epidemias da doença são comuns no País, onde o fungo pode sobreviver durante todo o ano. Medidas regulatórias para reduzir o inóculo entre safras e evitar a semeadura tardia de soja têm sido adotadas para manejar a doença. O controle da doença tem se baseado principalmente no controle químico, mas uma menor sensibilidade do fungo aos fungicidas tem sido relatada no Brasil. Genes de resistência têm sido mapeados e incorporados às cultivares. Por causa da redução da eficiência dos fungicidas, a adoção de medidas integradas para o controle da doença será importante para a sustentabilidade da cultura. Este artigo de revisão apresenta as principais mudanças no sistema de produção da soja causadas pela introdução do fungo no Brasil, as medidas de controle atualmente usadas para evitar perdas, e as novas tendências que, juntas com estratégias biotecnológicas, podem melhorar o manejo da doença no futuro.
Resumo:
The continuous soybean-maize crop succession in the tropical region of Brazil has led to significant increases in the population size of root-knot (Meloidogyne incognita and M. javanica ) and root-lesion nematodes (Pratylenchus brachyurus), which make soils unsuitable for soybean cropping. A greenhouse study was conducted to identify sunflower genotypes adapted to the tropical region of Brazil and that are resistant to M. incognita, M. javanica and/or P. brachyurus . Two experiments for each nematode were conducted in a completely randomized design with six replicates. Gall index was calculated from visual scores (0?5) of gall intensity on roots for the root-knot nematode. Initial and final population density and reproduction factor were also measured for each nematode. Sunflower genotypes varied in resistance to the nematodes. Sunflower hybrids BRS 321 and BRS 323 were resistant to M. javanica and P. brachyurus and exhibited low gall index for M. incognita . The cultivars are good alternatives to using in the succession of soybean in nematode-infested areas of the tropical regions of Brazil. No sunflower genotype was identified as resistant to M. incognita and thus sunflower cropping is not indicated in areas infested with this nematode.
Resumo:
The Agrobacterium-mediated transformation system was extended to two indica cultivars: a widely cultivated breeding line IR-64 and an elite basmati cultivar Karnal Local. Root tips and shoot tips of seedlings, and scutellar-calli derived from mature seeds showed high-efficiency Agrobacterium tumefaciens infection and stable transformation. In addition to the superbinary vector pTOK233 in Agrobacterium strain LBA4404, almost equally high levels of transformation were achieved with a relatively much smaller (13.1 kb) binary vector (pCAMBIA1301) in a supervirulent host strain AGL1. In both cases, as well as in both cultivars, while 60–90% of the infected explants produced calli resistant to the selectable agent hygromycin, 59–75% of such calli tested positive for GUS. A high level (400 μM) of acetosyringone in the preinduction medium for Agrobacterium and a higher level (500 μM) in the cocultivation medium was necessary for an enhancement in transformation frequency of the binary vector to levels comparable to a superbinary. Hygromycin-resistant calli could be produced from all the explants used. Transformants could be regenerated for both cultivars using the superbinary and binary vector, but only for calli of scutellar origin. In addition to the molecular confirmation of hpt and gus gene transfer and transcription, absence of gene sequences outside the transferred DNA (T-DNA) region confirmed absence of any long T-DNA transfer.
Genotype x culture media interaction effects on regeneration response of three indica rice cultivars
Resumo:
Interactive effects of genotypes with callus induction and regeneration media combinations on green plantlet regeneration response were studied for three indica rice (Oryza sativa L.) cultivars, IR-72, IR-54 and Karnal Local. Isolated mature-embryoswere used to derive scutellar callus and fifteen media combinations involvingMS, N6, R2, SK1 and some modifications were tested. Regeneration percentage as well as the shoot-bud induction frequency were influenced by genotype, callus induction medium, regeneration medium, interaction between genotype and the two media (callus induction and regeneration) as well the interaction between the callus induction medium and regeneration medium. Basal media combination of SK1m (callusing) and MS (regeneration) was found to be the best for cv. Karnal Local in which regeneration frequency of 88% and shoot-bud induction of 233% was observed. In IR-72, the highest regeneration frequency of 47.5% and shoot-bud induction frequency of 77% was obtained on MS-MS combination. In IR-54, highest regeneration frequency (25%) was recorded on MMS(N)-MMS(N) combination, whereas, highest frequency of shoot-bud induction (50%) was observed on MMS(S)-MS combination. Although genotype and the composition of the callus induction basal medium were the major determinants of regeneration response, an overall analysis of variation also revealed a significant interaction between the media used for de-differentiation (callusing) and re-differentiation (plantlet regeneration)
Resumo:
We report the first successful Agrobacterium-mediated transformation of Australian elite rice cultivars, Jarrah and Amaroo, using binary vectors with our improved promoters and selectable markers. Calli derived from mature embryos were used as target tissues. The binary vectors contained hph (encoding hygromycin resistance) or bar (encoding herbicide resistance) as the selectable marker gene and uidA (gus) or sgfpS65T as the reporter gene driven by different promoters. Use of Agrobacterium strain AGL1 carrying derivatives of an improved binary vector pWBVec8, wherein the CaMV35S driven hph gene is interrupted by the castor bean catalase 1 intron, produced a 4-fold higher number of independent transgenic lines compared to that produced with the use of strain EHA101 carrying the binary vector pIG121-Hm wherein the CaMV35S driven hph is intronless. The Ubiquitin promoter produced 30-fold higher β-glucuronidase (GUS) activity (derivatives of binary vector pWBVec8) in transgenic plants than the CaMV35S promoter (pIG121-Hm). The two modified SCSV promoters produced GUS activity comparable to that produced by the Ubiquitin promoter. Progeny analysis (R1) for hygromycin resistance and GUS activity with selected lines showed both Mendelian and non-Mendelian segregation. Lines showing very high levels of GUS activity in T0 showed a reduced level of GUS activity in their T1 progeny, while lines with moderate levels of GUS activity showed increased levels in T1 progeny. Stable heritable green fluorescent protein (GFP) expression was also observed in few transgenic plants produced with the binary vector pTO134 which had the CaMV35S promoter-driven selectable marker gene bar and a modified CaMV35S promoter-driven reporter gene sgfpS65T.
Resumo:
Complementary DNAs covering the entire RNA genome of soybean dwarf luteovirus (SDV) were cloned and sequenced. Computer analysis of the 5861 nucleotide sequence revealed five major open reading frames (ORFs) possessing conservation of sequence and organisation with known luteovirus sequences. Comparative analyses of the genome structure show that SDV shares sequence homology and features of gene organisation with barley yellow dwarf virus (PAV isolate) in the 5' half of the genome, yet is more closely related to potato leafroll virus in its 3' coding regions. In addition, SDV differs from other known luteoviruses in possessing an exceptionally long 3' terminal sequence with no apparent coding capacity. We conclude from these data that the SDV genome represents a third variant genome type in the luteovirus group.
Resumo:
Following microprojectile mediated delivery of a plasmid construct (pAHC-25) encoding bar (bialophos resistance) gene into five-day-old scutellar calli derived from mature embryos, the effectiveness of selection procedure for bar-gene expressing tissue was compared for two indica rice cultivars (IR-64 and Karnal Local). While IR-64 transformants could be selected through the generally used semi-solid selection medium, the same procedure was not effective in the basmati cultivar Karnal Local. In the latter case, while lower concentrations (2–4 mg 1−1) of the selective agent phosphinothricin (PPT) yielded only escapes, higher concentrations (6–8 mg l−1) inhibited proliferation of transformed as well as untransformed sectors. For Karnal Local, a liquid medium based selection system was successfully utilized for recovering transformed sectors and, eventually, regenerants. The study demonstrates the generation of transformants of two elite indica cultivars using the environment-independent system of mature embryos from seeds.