976 resultados para Source areas


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were discovered in Berriasian to Valanginian hemipelagic (shelfal) to eupelagic (deep-sea) sediments of the Wombat Plateau (Site 761), Argo Abyssal Plain (Sites 261, 765), southern Exmouth Plateau (Site 763), and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with trachyandesitic to rhyolitic ash as parent material is proved by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, slender zircon), and rock fragments, and by a vitroclastic ultra-fabric (smectitized glass shards). For the Argo Abyssal Plain, we can distinguish four types of bentonitic claystones of characteristic waxy appearance: (1) pure smectite bentonites, white to light gray, sharp basal contacts, and a homogeneous cryptocrystalline smectite matrix, (2) thin, greenish-gray bentonitic claystones having sharp upper and lower contacts, (3) gray-green bentonitic claystones mottled with background sedimentation and a distinct amount of terrigenous and pelagic detrital material, and (4) brick-red smectitic claystones having diffuse sedimentary contacts and a doubtful volcanic origin. For the other drill sites, we can distinguish between (1) pure bentonitic claystones similar in appearance and chemical composition to Type 1 of the Argo Abyssal Plain (except for gradual basal contacts) and (2) impure bentonitic claystones containing textures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components resulting from resedimentation or bioturbation. The ash layers were progressively altered (smectitized) during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally, completely homogenized to a pure smectite matrix without obvious relict structures. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau and, via turbidity currents, into the adjacent abyssal plains. The Wombat and Argo abyssal plain bentonites are interpreted, at least in parts, as proximal or distal ash turbidites, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The record of eolian deposition on the Ontong Java Plateau (OJP) since the Oligocene (approximately 33 Ma) has been investigated using dust grain size, dust flux, and dust mineralogy, with the goal of interpreting the paleoclimatology and paleometeorology of the western equatorial Pacific. Studies of modern dust dispersal in the Pacific have indicated that the equatorial regions receive contributions from both the Northern Hemisphere westerly winds and the equatorial easterlies; limited meteorological data suggest that low-altitude westerlies could also transport dust to OJP from proximal sources in the western Pacific. Previous studies have established the characteristics of the grain-size, flux, and mineralogy records of dust deposited in the North Pacific by the mid-latitude westerlies and in the eastern equatorial Pacific by the low-latitude easterlies since the Oligocene. By comparing the OJP records with the well-defined records of the mid-latitude westerlies and the low-latitude easterlies, the importance of multiple sources of dust to OJP can be recognized. OJP dust is composed of quartz, illite, kaolinite/chlorite, plagioclase feldspar, smectite, and heulandite. Mineral abundance profiles and principal components analysis (PCA) of the mineral abundance data have been used to identify assemblages of minerals that covary through all or part of the OJP record. Abundances of quartz, illite, and kaolinite/chlorite covary throughout the interval studied, defining a mineralogical assemblage supplied from Asia. Some plagioclase and smectite were also supplied as part of this assemblage during the late Miocene and Pliocene/Pleistocene, but other source areas have supplied significant amounts of plagioclase, smectite, and heulandite to OJP since the Oligocene. OJP dust is generally coarser than dust deposited by the Northern Hemisphere westerlies or the equatorial easterlies, and it accumulates more rapidly by 1-2 orders of magnitude. These relationships indicate the importance of the local sources on dust deposition at OJP. The grain-size and flux records of OJP dust do not exhibit most of the events observed in the corresponding records of the Northern Hemisphere westerlies or the equatorial easterlies, because these features are masked by the mixing of dust from several sources at OJP. The abundance record of the Asian dust assemblage at OJP, however, does contain most of the features characteristic of dust flux by means of the Northern Hemisphere westerlies, indicating that the paleoclimatic and paleometeorologic signal of a particular source area and wind system can be preserved in areas well beyond the region dominated by that source and those winds. Identifying such a signal requires "unmixing" the various dust assemblages, which can be accomplished by combining grain-size, flux, and mineralogic data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a Rare Earth Elements (REE) record at decadal resolution determined in the EPICA ice core drilled in Dronning Maud Land (EDML) in the Atlantic Sector of the East Antarctic Plateau, covering the transition from the last glacial age (LGA) to the early Holocene (26 600-7500 yr BP). Additionally, samples from potential source areas (PSAs) for Antarctic dust were analysed for their REE characteristics. The dust provenance is discussed by comparing the REE fingerprints in the ice core and the PSAs samples. We find a shift in REE composition at 15 200 yr BP in the ice core samples. Before 15 200 yr BP, the dust composition is very uniform and its provenance was likely to be dominated by a South American source. After 15 200 yr BP, multiple sources such as Australia and New Zealand become relatively more important, albeit South America is possibly still an important dust supplier. A similar change in the dust characteristics was observed in the EPICA Dome C ice core at around ~15 000 yr BP. A return to more glacial dust characteristics between ~8300 and ~7500 yr BP, as observed in the EPICA Dome C core, could not be observed in the EDML core. Consequently, the dust provenance at the two sites must have been different at that time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A geochemical analysis is conducted on hemipelagic sediments at ODP Leg 162, Site 907, North Atlantic. On the basis of major and minor element concentrations, the sequence is divided into five units. Geochemical data reveal that the sediments originated from two specific source areas, i.e., continental icerafted debris (IRD) and Icelandic basalt. In the upper part (lithological units I and II, 0 to 63.1 meters below sea floor (mbsf)), sediments were derived from continental IRD, whereas in the lower part, sediments (lithological units III, IV, and V, below 63.1 mbsf) comprise mixture of continental IRD and minor supply from the Icelandic basalt. The ratio of TiO2/Al2O3 to SiO2 content and the Th to Ti/Al molar ratio clearly provide a key to discriminate provenances. The change in source area is most likely related to the oceanographic and climatic evolution in the North Atlantic since the middle Miocene. Biogenic fossil-barren intervals (Units II and V) are considered as a consequence of dissolution caused by oceanic circulation. The timing of IRD initiation confers with that of geochemical analysis. Total organic carbon to total nitrogen (C/N) ratio shows a striking variation in the entire core. The C/N ratios exceed 10 below approximately 196 mbsf (lithological unit V) with a gradual downward increase. This suggests that terrigenous organic matters have been supplied from the neighboring continents. The total organic carbon to total sulfur (C/S) ratio also shows such possibility as well as diagenetic changes in Units IV and V. The carbonate-barren intervals presented in Units II and V, and intermittently in Units III and IV are interpreted as a consequence of dissolution effect related with climatic variation and deep-water circulation. Additional low surface productivity was considerable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to study late Holocene changes in sediment supply into the northern Arabian Sea, a 5.3 m long gravity core was investigated by high-resolution geochemical and mineralogical techniques. The sediment core was recovered at a water depth of 956 m from the continental slope off Pakistan and covers a time span of 5 kyr. During the late Holocene source areas delivering material to the sampling site did, however, not change and were active throughout the year.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geochemical investigations were conducted on 10 discrete ash layers and 22 samples of dispersed ash accumulations from Sites 747, 749, and 751 of Ocean Drilling Program (ODP) Leg 120 to the Kerguelen Plateau in the southern Indian Ocean. The chemical data obtained from some 400 single-grain glass analyses allow the characterization of two rock series. The first consists of transitional to alkali basalts; the second, mainly of trachytes with subordinated rhyolites, all reflecting the characteristic magmatological evolution of the Kerguelen Plateau as a hotspot-related volcanism. Chemical correlation with possible source areas indicates that the ashes were most probably erupted from the Kerguelen Islands. The investigated ash layers clearly reflect the Oligocene to Quaternary changes in the composition of the volcanic material recorded from the Kerguelen Islands. In addition to the Kerguelen Islands, Heard Island, Crozet Island, and other sources may have contributed to deposition of the tephras. Pleistocene tephras of "exotic" calc-alkaline composition are most probably derived from enhanced magmatic activity during that time span at the South Sandwich island arc. When using data obtained from tephras of the ODP Leg 119 Kerguelen sites, several eruptive periods can be correlated through the composition of the deposited ashes. Some of them are widely distributed over the Kerguelen Plateau and are seen as a first step toward a southern Indian Ocean tephrostratigraphy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81°N and 83°N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conceptualization of groundwater flow systems is necessary for water resources planning. Geophysical, hydrochemical and isotopic characterization methods were used to investigate the groundwater flow system of a multi-layer fractured sedimentary aquifer along the coastline in Southwestern Nicaragua. A geologic survey was performed along the 46 km2 catchment. Electrical resistivity tomography (ERT) was applied along a 4.4 km transect parallel to the main river channel to identify fractures and determine aquifer geometry. Additionally, three cross sections in the lower catchment and two in hillslopes of the upper part of the catchment were surveyed using ERT. Stable water isotopes, chloride and silica were analyzed for springs, river, wells and piezometers samples during the dry and wet season of 2012. Indication of moisture recycling was found although the identification of the source areas needs further investigation. The upper-middle catchment area is formed by fractured shale/limestone on top of compact sandstone. The lower catchment area is comprised of an alluvial unit of about 15 m thickness overlaying a fractured shale unit. Two major groundwater flow systems were identified: one deep in the shale unit, recharged in the upper-middle catchment area; and one shallow, flowing in the alluvium unit and recharged locally in the lower catchment area. Recharged precipitation displaces older groundwater along the catchment, in a piston flow mechanism. Geophysical methods in combination with hydrochemical and isotopic tracers provide information over different scales and resolutions, which allow an integrated analysis of groundwater flow systems. This approach provides integrated surface and subsurface information where remoteness, accessibility, and costs prohibit installation of groundwater monitoring networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different source areas, oceanography and climate regimes influenced the clay mineral assemblages and grain size distribution of two sediment cores from the North and South Aegean Sea during the last glacial and the Holocene. In the North Aegean Sea, clay mineral composition is mainly controlled by sea level evolution, melting of southeastern European glaciers, and establishment of the connection between the Black Sea and Aegean Sea. The long-term development of clay mineral assemblages in the South Aegean Sea reflects changes in the Nile discharge and African dust input. At this site, the establishment of pluvial conditions in the Nile catchment during the early to middle Holocene resulted in a substantial rise in smectite/illite ratios. In the late Holocene, stepwise aridification of the southern borderlands caused an increase in windblown sediment material and a decrease in Nile suspended material. The clay mineral records exhibit periodic millennial-scale fluctuations. In the North Aegean Sea, the changes are centred at a period of 1.3-1.8 ka and can be attributed to short-term climate and weathering changes in the northern borderlands. The changes in the South Aegean Sea are centred at periods of 3.2-4.3, 1.9-2.4 and 1.3-1.7 ka reflecting short-term changes in wind strength and Northeast African hydrology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terrestrial organic matter (OM) in pelagic sediments is discussed with regard to depositional processes and land-sea interactions in the modern and past glacial/interglacial Equatorial Atlantic. Special emphasis is placed on a critical evaluation of different analytical approaches (C/N, Rock-Eval Pyrolysis, stable carbon isotopes, palynology, organic petrology, and selected biomarkers) which are currently used for the qualitative and quantitative assessment of terrigenous organic carbon. If binary mixing equations are used to calculate terrestrial and marine proportions of organic carbon, we consider the definition of endmember values to be most critical since these values may be biased by a great number of independent controls. A combination of geochemical methods including optical studies (organic petrology and palynology) is therefore suggested to evaluate each individual proxy. Organic geochemical analyses performed on sediments from the modern and Late Quaternary Equatorial Atlantic evidence fluctuations in eolian supply of terrigenous OM related to changes in intensity of the trade winds. Quantification of this organic fraction leads to differing proportions depending on the approach applied, i.e. the organic carbon isotopic composition or maceral analyses. Modern distribution of terrigenous OM reveals a decrease in supply towards the basin contributing less than a fifth of the total OM in pelagic areas. Organic geochemical data indicate that sedimentation in the modern northeastern Brasil Basin is affected by lateral advection of reworked OM probably from southern source areas. Glacial/interglacial deposits from the pelagic Equatorial Atlantic (ODP Site 663), covering isotopic stages 12 and 11, reveal that deposition of terrigenous OM was higher under past glacial conditions, in correspondence to generally enhanced dust fluxes. Proportions of terrigenous OM, however, never exceed 50% of the total OM according to maceral analyses. Other estimates, recently proposed by Verardo and Ruddiman (1996), are considered to be too high probably for analytical reasons. Palynological records in the Equatorial Atlantic parallel dust records. Increased portions of grass pollen suggest the admixture of C4-plant material under modern and past glacial conditions. It is therefore assumed, as one possible interpetation, that C4-plant debris has an effect on sedimentary d13Corg and might explain differences between isotopic and microscopic quantitative estimates. Using the difference between these two records, we calculate that maximum supply of C4-material remains below 20% of the total OM for the deep modern and past glacial/interglacial Equatorial Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over 100 samples of recent surface sediments from the bottomn of the Atlantic Ocean offshore NW Africa between 34° and 6° N have been analysed palynologically. The objective of this study was to reveal the relation between source areas, transport systems, and resulting distribution patterns of pollen and spores in marine sediments off NW Africa, in order to lay a sound foundation for the interpretation of pollen records of marine cores from this area. The clear zonation of the NW-African vegetation (due to the distinct climatic gradient) is helpful in determining main source areas, and the presence of some major wind belts facilitates the registration of the average course of wind trajectories. The present circulation pattern is driven by the intertropical front (ITCZ) which shifts over the continent between c. 22° N (summer position) and c. 4° N (winter position) in the course of the year. Determination of the period of main pollen release and the average atmospheric circulation pattern effective at that time of the years is of prime importance. The distribution patterns in recent marine sediments of pollen of a series of genera and families appear to record climatological/ecological variables, such as the trajectory of the NE trade, January trades, African Easterly Jet (Saharan Air Layer), the northernmost and southernmost position of the intertropical convergence zone, and the extent and latitudinal situation of the NW-African vegetation belt. Pollen analysis of a series of dated deep-sea cores taken between c. 35° and the equator off NW African enable the construction of paleo-distribution maps for time slices of the past, forming a register of paleoclimatological/paleoecological information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present grain-size distributions of the terrigenous fraction of two sediment cores from the southeast Levantine Sea (SL112) and the northern Aegean Sea (SL148), spanning the time interval from the late glacial to the present. End-member modelling of the grain-size distribution allows discriminating between aeolian and fluvial transport of the sediments and helps to infer palaeoenvironmental conditions in the source areas. Sedimentary and depositional processes during the late glacial and Holocene were controlled by climatic variations of both the northern high latitudes and the African climate system. The sedimentation at site SL112 off Israel is dominated by the suspension load of the River Nile and aeolian dust from the Sahara. Variations in grain size reflect the early to mid- Holocene climate transition from the African Humid Period to recent arid conditions. This climate change was gradual, in contrast to the abrupt humidity change documented inWestern Saharan records. This implies a successive decrease in Nile river sediment supply due to a step-wise aridification of the headwaters. The grain-size data of SL112 show a humidity maximum at 5 kyr BP coincident with a regionally-restricted wet phase in the Levantine Sea. The sediments at the North Aegean site SL148 consist of riverine particles and low amounts of aeolian dust, probably derived from South European sources and with probably minor Saharan influence. The sedimentation processes are controlled by climate conditions being characterized by enhanced deposition of dust during the cold and dry glacial period and by decreased aeolian influx during the temperate and humid Holocene.