966 resultados para Solution Phase Compositions
Resumo:
The phase equilibria in the Al-Fe-Zn-O system in the range 1250 °C to 1695 °C in air have been experimentally studied using equilibration and quenching techniques followed by electron probe X-ray microanalysis. The phase diagram of the binary Al2O3-ZnO system and isothermal sections of the Al2O3-“Fe2O3”-ZnO system at 1250 °C, 1400 °C, and 1550 °C have been constructed and reported for the first time. The extents of solid solutions in the corundum (Al,Fe)2O3, hematite (Fe,Al)2O3, Al2O3*Fe2O3 phase (Al,Fe)2O3, spinel (Al,Fe,Zn)O4, and zincite (Al,Zn,Fe)O primary phase fields have been measured. Corundum, hematite, and Al2O3*Fe2O3 phases dissolve less than 1 mol pct zinc oxide. The limiting compositions of Al2O3*Fe2O3 phase measured in this study at 1400 °C are slightly nonstoichiometric, containing more Al2O3 then previously reported. Spinel forms an extensive solid solution in the Al2O3-“Fe2O3”-ZnO system in air with increasing temperature. Zincite was found to dissolve up to 7 mole pct of aluminum in the presence of iron at 1550 °C in air. A meta-stable Al2O3-rich phase of the approximate composition Al8FeZnO14+x was observed at all of the conditions investigated. Aluminum dissolved in the zincite in the presence of iron appears to suppress the transformation from a round to platelike morphology.
Resumo:
The phase equilibria in the Fe-Mg-Zn-O system in the temperature range 1100-1550degreesC in air have been experimentally studied using equilibration and quenching followed by electron probe X-ray microanalysis. The compositions of condensed phases in equilibrium in the binary MgO-ZnO system and the ternary Fe-Mg-O system have been reported at sub-solidus in air. Pseudo-ternary sections of the quaternary Fe-Mg-Zn-O system at 1100, 1250 and 1400degreesC in air were constructed using the experimental data. The solid solution of iron oxide, MgO and ZnO in the periclase (Mg, Zn, Fe)O, spinel (Mg2+, Fe2+, Zn2+)(x)Fe(2+y)3+O4 and zincite (Zn, Mg, Fe)O phases were found to be extensive under the conditions investigated. A continuous spinel solid solution is formed between the magnesioferrite (Mg2+, Fe2+)(x)Fe(2+y)3+O4 and franklinite (Zn2+, Fe2+)(x)Fe(2+y)3+O4 end-members at 1100 and 1250degreesC, extending to magnetite (Fe2+)(x)Fe(2+y)3+O4 at 1400degreesC in air. The compositions along the spinel boundaries were found to be non-stoichiometric, the magnitude of the non-stoichiometry being a function of composition and temperature in air. It was found that hematite dissolves neither MgO nor ZnO in air.
Resumo:
Miscibility and phase separation in the blends of phenolphthalein poly(aryl ether ketone) (PPAEK) and poly(ethylene oxide) (PEO) were investigated by means of differential scanning calorimetry (DSC). The PPAEK/PEO blends prepared by solution casting from N,N-dimethylformamide (DMF) displayed single composition-dependent glass transition temperatures (T-g), intermediate between those of the pure components, suggesting that the blend system is miscible in the amorphous state at all compositions. All the blends underwent phase separation at higher temperatures and the system exhibited a lower critical solution temperature (LCST) behavior. A step-heating thermal analysis was designed to determine the phase boundaries with DSC. The significant changes in the thermal properties of blends were utilized to judge the mixing status for the blends and the phase diagram was thus established. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Aurivillius phase thin films of Bi5Ti3(FexMn1−x)O15 with x = 1 (Bi5Ti3FeO15) and 0.7 (Bi5Ti3Fe0.7Mn0.3O15) on SiO2-Si(100) and Pt/Ti/SiO2-Si substrates were fabricated by chemical solution deposition. The method was optimized in order to suppress formation of pyrochlore phase Bi2Ti2O7 and improve crystallinity. The structuralproperties of the films were examined by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Optimum crystallinity and pyrochlore phase suppression was achieved by the addition of 15 to 25 mol. % excess bismuth to the sols. Based on this study, 17.5 mol. % excess bismuth was used in the preparation of Bi2Ti2O7-free films of Bi5Ti3FeO15 on SrTiO3(100) and NdGaO3(001) substrates, confirming the suppression of pyrochlore phase using this excess of bismuth. Thirty percent of the Fe3+ ions in Bi5Ti3FeO15 was substituted with Mn3+ ions to form Bi2Ti2O7-free thin films of Bi5Ti3Fe0.7Mn0.3O15 on Pt/Ti/SiO2-Si, SiO2-Si(100), SrTiO3(100), and NdGaO3(001) substrates. Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films on Pt/Ti/SiO2-Si and SiO2-Si(100) substrates were achieved with a higher degree of a-axis orientation compared with the films on SrTiO3(100) and NdGaO3(001) substrates. Room temperature electromechanical and magnetic properties of the thin films were investigated in order to assess the potential of these materials for piezoelectric,ferroelectric, and multiferroic applications. Vertical piezoresponse force microscopy measurements of the films demonstrate that Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films are piezoelectric at room temperature. Room temperature switching spectroscopy-piezoresponse force microscopy measurements in the presence and absence of an applied bias demonstrate local ferroelectric switching behaviour (180°) in the films. Superconducting quantum interference device magnetometry measurements do not show any room temperature ferromagnetic hysteresis down to an upper detection limit of 2.53 × 10−3 emu; and it is concluded, therefore, that such films are not mutiferroic at room temperature. Piezoresponse force microscopy lithography images of Bi5Ti3Fe0.7Mn0.3O15thin films are presented.
Resumo:
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.
Resumo:
Crystal structure of compositionally homogeneous, nanocrystalline ZrO2-CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2 center dot ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t'-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t'-to-t '' followed by t ''-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t ''-form, transforms directly to the cubic phase. The results suggest that t'-to-t '' transition is of first order, but t ''-to-cubic seems to be of second order. (C) 2008 International Centre for Diffraction Data.
Resumo:
The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.
Resumo:
The phase transition of Reissner-Nordstrom AdS(4) interacting with a massive charged scalar field has been further revisited. We found exactly one stable and one unstable quasinormal mode region for the scalar field. The two of them are separated by the first marginally stable solution.
Resumo:
In this work, we employed the effective coordination concept to study the local environments of the Ge, Sb, and Te atoms in the Ge(m)Sb(2n)Te(m+3n) compounds. From our calculations and analysis, we found an average effective coordination number (ECN) reduction of 1.59, 1.42, and 1.37, for the Ge, Sb, Te atoms in the phase transition from crystalline, ECN=5.55 (Ge), 5.73 (Sb), 4.37 (Te), to the amorphous phase, ECN=3.96 (Ge), 4.31 (Sb), 3.09 (Te), for the Ge(2)Sb(2)Te(5) composition. Similar changes are observed for other compositions. Thus, our results indicate that the coordination changes from the crystalline to amorphous phase are not large as previously assumed in the literature, i.e., from sixfold to fourfold for Ge, which can contribute to obtain a better understanding of the crystalline to amorphous phase transition. (C) 2011 American Institute of Physics. [doi:10.1063/1.3533422]
Resumo:
A novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 0.6 mu L of blood at a concentration which is suitable for PCR amplification. In addition, the technique presented here requires inexpensive, common laboratory equipment, making it easily adopted for both clinical point-of-care applications and on-site forensic sample analysis.
Resumo:
Ti-rich Ti-Si-B alloys can be considered for structural applications at high temperatures (max. 700 degrees C), however, phase equilibria data is reported only for T = 1250 degrees C. Thus, in this work the phase stability of this system has been evaluated at 700 degrees C. In order to attain equilibrium conditions in shorter time, rapid solidified samples have been prepared and carefully characterized. The microstructural characterization of the produced materials were based on X-ray diffraction (XRD), scanning electron microscopy (SEM-BSE), high resolution transmission electron microscopy (HRTEM), High Temperature X-ray diffraction with Synchrotron radiation (XRDSR) and Differential Scanning Calorimetry (DSC). Amorphous and amorphous with embedded nanocrystals have been observed after rapid solidification from specific alloy compositions. The values of the crystallization temperature (Tx) of the alloys were in the 509-647 degrees C temperature range. After Differential Scanning Calorimetry and High Temperature X-ray Diffraction with Synchrotron radiation, the alloys showed crystalline and basically formed by two or three of the following phases: alpha Ti, Ti(6)Si(2)B; Ti(5)Si(3); Ti(3)Si and TiB. It has been shown the stability of the Ti(3)Si and Ti(6)Si(2)B phases at 700 degrees C and the proposition of an isothermal section at this temperature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A combination of an extension of the topological instability ""lambda criterion"" and a thermodynamic criterion were applied to the Al-La system, indicating the best range of compositions for glass formation. Alloy compositions in this range were prepared by melt-spinning and casting in an arc-melting furnace with a wedge-section copper mold. The GFA of these samples was evaluated by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. The results indicated that the gamma* parameter of compositions with high GFA is higher, corresponding to a range in which the lambda parameter is greater than 0.1, which are compositions far from Al solid solution. A new alloy was identified with the best GFA reported so far for this system, showing a maximum thickness of 286 mu m in a wedge-section copper mold. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.
Resumo:
Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material`s impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 degrees C and 980 degrees C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 degrees C and block-shaped when heat treated at 980 degrees C. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The glass-forming ability (GFA) of metallic alloys is associated with a topological instability criterion combined with a new parameter based on the average electronegativity difference of an element and its surrounding neighbours. In this model, we assume that during solidification the glassy phase competes directly with the supersaturated solid solution having the lowest topological instability factor for a given composition. This criterion is combined with the average electronegativity difference among the elements in the alloy, which reflects the strength of the liquid. The GFA is successfully correlated with this combined criterion in several binary glass-forming systems.