977 resultados para Solid-state NMR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by H-1 NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the 'twisted' conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CH...pi interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CH...pi interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noble metal ions like Pt(IV) and Pd(II) were impregnated on gamma-alumina and aerosol 300 silica surfaces. Reduction of these ions using ammonia borane in the solid state resulted in the formation of the respective metal nanoparticles embedded in BNHx polymer which is dispersed on the oxide support. Removal of the BNH polymer was accomplished by washing the samples repeatedly with methanol. In this process the polymer undergoes solvolysis to release H-2 accompanied by the formation of ammonium methoxy borate salt, which has been removed by repeated methanol washings. As a result, metal nanoparticles well dispersed on gamma-alumina and aerosol 300 silica were obtained. These samples have been characterized by a combination of techniques, including electron microscopy, powder X-ray diffraction, NMR spectroscopy and surface area analyser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unambiguous evidence for the engagement of CF3 group in N-H center dot center dot center dot F-C hydrogen bond in a low polarity solvent, the first observation of its kind, is reported. The presence of such weak molecular interactions in the solution state is convincingly established by one and two-dimensional H-1, F-19, and natural abundant N-15 NMR spectroscopic studies. The strong and direct evidence is derived by the observation of through-space couplings, such as, (1h)J(FH), (1h)J(FN), and (2h)J(FF), where the spin polarization is transmitted through hydrogen bond. In an interesting example of a molecule containing two CF3 groups getting simultaneously involved in hydrogen bond, where hydrogen bond mediated couplings are not reflected in the NMR spectrum, F-19-F-19 NOESY experiment yielded confirmatory evidence. Significant deviations in the strengths of (1)J(NH), variable temperature, and the solvent induced perturbations yielded additional support. The NMR results are corroborated by both DFT calculations and MD simulations, where the quantitative information on different ways of involvement of fluorine in two and three centered hydrogen bonds, their percentage of occurrences, and geometries have been obtained. The hydrogen bond interaction energies have also been calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of new BODIPYs (4-9) with bulky meso-trimethylsilylphenyl substitution were synthesized. The effect of the substituent's position on the emission properties of the BODIPYs was investigated in detail both in solution and solid state. The new BODIPYs exhibit emission in single crystals and in thin films. The logical increment of steric crowding in the compounds resulted in a periodic change in their conformational flexibility as evident from their F-19 NMR spectra, which in turn led to an increase of fluorescence in solution, thin films and single crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is focused on the design and synthesis of a diverse range of novel organosulfur compounds (sulfides, sulfoxides and sulfones), with the objective of studying their solid state properties and thereby developing an understanding of how the molecular structure of the compounds impacts upon their solid state crystalline structure. In particular, robust intermolecular interactions which determine the overall structure were investigated. These synthons were then exploited in the development of a molecular switch. Chapter One provides a brief overview of crystal engineering, the key hydrogen bonding interactions utilized in this work and also a general insight into “molecular machines” reported in the literature of relevance to this work. Chapter Two outlines the design and synthetic strategies for the development of two scaffolds suitable for incorporation of terminal alkynes, organosulfur and ether functionalities, in order to investigate the robustness and predictability of the S=O•••H-C≡C- and S=O•••H-C(α) supramolecular synthons. Crystal structures and a detailed analysis of the hydrogen bond interactions observed in these compounds are included in this chapter. Also the biological activities of four novel tertiary amines are discussed. Chapter Three focuses on the design and synthesis of diphenylacetylene compounds bearing amide and sulfur functionalities, and the exploitation of the N-H•••O=S interactions to develop a “molecular switch”. The crystal structures, hydrogen bonding patterns observed, NMR variable temperature studies and computer modelling studies are discussed in detail. Chapter Four provides the overall conclusions from chapter two and chapter three and also gives an indication of how the results of this work may be developed in the future. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of the NCI (National Cancer Institute) biological test results are included in the appendix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-state polymorphism of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], has been investigated via low-temperature and high-pressure crystallisation experiments. The samples have been characterised by single-crystal X-ray diffraction, optical microscopy and Raman spectroscopy. The solid-state phase behaviour of the compound is confirmed and clarified with respect to previous phase diagrams. The structures of the previously reported gamma-form, which essentially exhibits a G'T cation conformation, as well as those of the elusive beta- and alpha-forms, are reported. Crystals of the beta-phase are twinned and the structure is heavily disordered; the cation conformation in this form is predominantly TT, though significant contributions from other less frequently encountered conformers are also observed at low temperature and high pressure. The cation conformation in the alpha-form is GT; the presence of the G'T conformer at 193 K in this phase can be eliminated on cooling to 100 K. Whilst X-ray structural data are overall in good agreement with previous interpretations based on Raman and NMR studies, they also reveal a more subtle interplay of intermolecular interactions, which give rise to a wider range of conformers than previously considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey of predominantly industrial silicon carbide has been carried out using Magic Angle Spinning nuclear magnetic resonance (MAS nmr); a solid state technique. Three silicon carbide polytypes were studied; 3C, 6H, and 15R. The 13C and 29 Si MAS nmr spectra of the bulk SiC sample was identified on the basis of silicon (carbon) site type in the d iff ere n t pol Y t Y pes • Out to 5.00 A fro mac en t r a lsi 1 i con (0 r carbon) atom four types of sites were characterized using symmetry based calculations. This method of polytype analysis was also considered, in the prelminary stages, for applications with other polytypic material; CdBr 2 , CdI 2 , and PbI 2 " In an attempt to understand the minor components of silicon carbide, such as its surface, some samples were hydrofluoric acid washed and heated to extreme temperatures. Basically, an HF removable species which absorbs at -110 ppm (Si0 2 ) in the 29 Si MAS nmr spectrum is found in silicon carbide after heating. Other unidentified peaks observed at short recycle delays in some 29 Si MAS nmr spectra are considered to be impurities that may be within the lattice. These components comprise less than 5% of the observable silicon. A Tl study was carried out for 29 Si nuclei in a 3C ii polytype sample, using the Driven Equilibrium Single-Pulse Observation of T1 (DESPOT) technique. It appears as though there are a number of nuclei that have the same chemical shift but different T1 relaxation times. The T1 values range from 30 seconds to 11 minutes. Caution has to be kept when interpreting these results because this is the first time that DESPOT has been used for solid samples and it is not likely in full working order. MAS nmr indicates that the 13C and 29 Si ~sotropic chemical shifts of silicon carbide appear to have a reciprocal type of relationship_ Single crystal nmr analysis of a 6H sample is accordance with this finding when only the resultant isotropic shift is considered. However, single crystal nmr also shows that the actual response of the silicon and carbon nuclear environment to the applied magnetic field at various angles is not at all reciprocal. Such results show that much more single crystal nmr work is required to determine the actual behavior of the local magnetic environment of the SiC nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The condensation of [Ph2(OH)Sn(CH2)nSn(OH)Ph2] (1-3; n = 1-3) with HO3SCF3 and HO2PPh2 provided [Ph2Sn(CH2)nSnPh2(OH)](O3SCF3) (4-6; n = 1-3) and [Ph2(O2PPh2)Sn(CH2)nSn(O2PPh2)Ph2] (10-12; n = 1-3), respectively. The reaction of [Ph2Sn(CH2)nSnPh2(OH)](O3SCF3) (4-6; n = 1-3) with HO2PPh2 and NaO2PPh2 gave rise to the formation of [Ph2Sn(CH2)nSnPh2(O2PPh2)](O3SCF3) (7-9; n = 1-3) and [Ph2(OH)Sn(CH2)nSn(O2PPh2)Ph2] (13-15; n = 1-3), respectively. In the solid state, compounds 4-9 comprise ion pairs of cationic cyclo-[Ph2SnCH2SnPh2(OH)]22+, cyclo-[Ph2Sn(CH2)nSnPh2(OH)]+ (n = 2, 3), and cyclo-[Ph2Sn(CH2)nSnPh2(O2PPh2)]+ (n = 1-3) and triflate anions. In MeCN, the eight-membered-ring system cyclo-[Ph2SnCH2SnPh2(OH)]22+ appears to be in equilibrium with the four-membered-ring system cyclo-[Ph2SnCH2SnPh2(OH)]+. In contrast, compounds 10-15 show no ionic character. Compounds 1-15 were characterized by multinuclear NMR spectroscopy in solution and in the solid state, IR spectroscopy, conductivity measurements, electrospray mass spectrometry, osmometric molecular weight determinations, and X-ray crystallography (4, 5, 7, and 12).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimethyl-pyrrolidinum-based salts have been investigated by means of DSC, conductivity, NMR and Raman spectroscopy. The investigation aims to study the effect of the anion on the behaviour of the salt, in terms of plastic properties as well as rotational degrees of freedom of the cation. The materials range from the non-plastic iodide salt to the highly plastic BF4 salt, which flows under its own weight at elevated temperatures. The different rotational and translational motions of the cations, and the difference between rotator and plastic phases are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binary and ternary addition of 2 wt.% LiBF4 and 2 wt.% amorphous polyethylene oxide (aPEO) respectively to the plastic crystal forming salt P13BF4 (where P13+=methylpropyl pyrrolidinium cation) was investigated with specific focus on the phase behaviour and evaluation of transport characteristics. Differential scanning calorimetry (DSC), optical thermomicroscopy, solid state nuclear magnetic resonance (NMR), and AC impedance spectroscopy were used to develop an understanding of the conduction process in the pure and mixed systems. The morphology of the ternary compound appeared as hexagonal spherulites upon solidification. Multinuclear NMR Pulsed Field Gradient measurements (1H,19F,7Li) to probe both cation and anion diffusion coefficients are reported. The anion is shown to be the most diffusive (at 320 K:19F=2.5×10−11 m2 s−1; 1H: 1.8×10−11 m2 s−1; 7Li: 1.1×10−11 m2 s−1) in the ternary compound, with enhanced conductivity (2.7×10−5 S cm−1 at 310 K) just below the melt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The boundary films generated on a series of inorganic compounds, typical of native films on metal and ceramic surfaces, when exposed to various ionic liquids (ILs) based on the trihexyl(tetradecyl)phosphonium cation have been characterized using multinuclear solid-state NMR. The NMR results indicate that SiO2 and Mg(OH)2 interact strongly with the anion and cation of each IL through a mechanism of adsorption of the anion and subsequent close proximity of the cation in a surface double layer (as observed through 1H−29Si cross polarization experiments). In contrast, Al2O3, MgO, ZnO, and ZrO2 appear less active, strongly suggesting the necessity of hydroxylated surface groups in order to enhance the generation of these interfacial films. Using solid-state NMR to characterize such interfaces not only has the potential to elucidate mechanisms of wear resistance and corrosion protection via ILs, but is also likely to allow their rapid screening for such durability applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

27Al, 31P and 7Li NMR measurements have been performed on lithium conducting ceramics based on the LiTi2(PO4)3 structure with Al, V and Nb metal ions substituted for either Ti or P within the framework NASICON structure. The 27Al magic angle spinning NMR measurements have revealed that, although Al is intended to substitute for octahedral Ti sites, additional substitution into tetrahedral environments (presumably phosphorous sites) occurs with increasing amount of Al addition. This tetrahedral substitution appears to occur more readily in the presence of vanadium, in Li1+xAlxTi2−x(PO4)2.9(VO4)0.1, whereas similar niobium additions (in place of vanadium) appear to stifle tetrahedral substitution. 7Li static NMR spectra reveal quadrupolar structure with Cq approximately 42 kHz, largely independent of substitution. Measurement of the 7Li central transition linewidth at room temperature reveals a relatively mobile lithium species (300–900 Hz) with linewidth tending to decrease with Al substitution and increase with increasing V or Nb. This new structural information is discussed in the context of ionic conduction in these ceramics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic crystal materials have long been known but have only relatively recently become of interest as solid–state ion conductors. Their properties are often associated with dynamic orientational disorder or rotator motions in the crystalline lattice. This paper describes recent work in the field including the range of organic ionic compounds that exhibit ion conduction at room temperature. Conductivity in some cases is high enough to render the compounds of interest as electrolyte materials in all solid state electrochemical devices. Doping of the plastic crystal phase with a small ion such as Li+ in some cases produces an even higher conductivity. In this case the plastic crystal acts as a solid state “solvent” for the doped ion and supports the conductive motion of the dopant via motions of the matrix ions. These doped materials are also described in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidating the rate and geometry of molecular dynamics is particularly important for unravelling ion-conduction mechanisms in electrochemical materials. The local molecular motions in the plastic crystal 1-ethyl-1-methylpyrrolidinium tetrafluoroborate ([C2 mpyr][BF4 ]) are studied by a combination of quantum chemical calculations and advanced solid-state nuclear magnetic resonance spectroscopy. For the first time, a restricted puckering motion with a small fluctuation angle of 25° in the pyrrolidinium ring has been observed, even in the low-temperature phase (-45 °C). This local molecular motion is deemed to be particularly important for the material to maintain its plasticity, and hence, its ion mobility at low temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of addition of different amounts of acetylacetone (acacH) on the species formed at room temperature and after thermohydrolysis at 70 degreesC for 30 and 120 min of ethanolic SnCl4.5H(2)O solutions is followed by EXAFS spectroscopy at the Sn K-edge. We show that thermohydrolyzed solutions are a mixture of SnO2 nanoparticles and soluble tin polynuclear species. The complexation of the tin molecular precursors by acetylacetonate ligands is evidenced by H-1, C-13, and Sn-119 NMR spectroscopy and EXAFS for a acacH/Sn ratio higher than 2. Single crystals are isolated from solution and the structure, determined by X-ray diffraction, is built up from monomeric Cl-3(H2O)Sn(acac)-H2O units bridged together by hydrogen bonding. The acacH/Sn ratio in solution controls the polycondensation of the hydrolyzed species but not the crystallite size of the SnO2 nanoparticles (similar to2 nm). Because of the major presence of chelated tin mono- and dimeric complexes in solution for acacH/Sn > 2, the condensation is almost inhibited, meanwhile the decrease of amount of chelated complexes for the acacH/Sn < 2 gives rise to an increase of the number of nanoparticles.